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Interferometry

 

Chapter 4

 

Density changes in the fluid can be monitored by the use of interferometry because they affect the
optical path in the arm of the interferometer passing through the fluid. In this chapter we discuss
the conversion of an interferogram to a density distribution and we suggest a procedure for the
determination of the thermal diffusivity by analysis of interferograms.

 

4.1 Interferograms

 

Interference results from the recombination of the two parts of a beam of light which is divided by
the beamsplitter in the IFU (see fig. 3.4). The actual interference order at a location in an inter-
ferogram depends on the optical path lengths of both parts. In this section, we present the basic
interference order equation and our method to determine the interference order in interferograms.

 

4.1.1 Interference order

 

An example of an interferogram when the fluid is homogeneous is displayed in fig. 4.1. The grey,
horizontal belt in the interferogram is where the fluid meets the (transparent) quartz substrate, i.e.
the heater. The area below it depicts the fluid. The spot in the centre of the picture originates from
the narrow laser beam and is not part of the interferogram. The -axis we chose along the direc-
tion of gravity in earth-bound experiments and the -axis perpendicular to it in the plane of the
interferogram. The -axis is along the optical axis, perpendicular to the plane of the interferogram.

At a location  in the interferogram, the interference order  is determined by the dif-
ference in optical path length between two rays that meet at , of which one leads through the
fluid and the other follows the arm of the interferometer towards the IFU-mirror (see fig. 3.4).
When the fluid is homogeneous in every -plane, the path of the ray through the fluid is at all
times parallel to the heater, along the optical axis. Changes in the density of the fluid along the
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path of such a ray correspond to an average change in refractive index  which, conse-
quently, changes the optical path difference at  in the interferogram. The corresponding
change in interference order, , then relates to the laser light wavelength, , the path length
of light in the sample, , and  according to:

.

 

(4.1)

 

Figure 4.1

 

An example of an interferogram.

 

4.1.2 Interferogram analysis

 

When the fluid is homogeneous, the optical path of the arm through the fluid is equal for all posi-
tions (y,z). In this case the fringes in the interferogram are straight and the number and their angle
w.r.t. an arbitrary axis are determined by the tilt in the tilt mirror in the other interferometer arm.
Thus, the fringes are equidistant as is displayed in fig. 4.1. Therefore,  for a specific  takes on
the form of a periodic function. In the small region of the fluid that is monitored by interferom-
etry, generally the density of the fluid is just a function of ; e.g. upon heating with the gold plate,
in a plane parallel to the heater the fluid remains homogeneous. Therefore, at  after a time ,
the change in interference order  is equal for all , and  remains a peri-
odic function of which only the phase differs from that of . By means of Fourier transfor-
mation of , it is possible to determine accurately the period and the phase of the leading
component of this periodic function and, ergo, a difference in interference order.

The determination of order differences by means of Fourier transformation at many -positions
leads to a  of which the values do not exceed an order difference of 0.5; phase differences
between two (periodically equal) functions are determined within a multiple of 2

 

π

 

. Therefore, in
order to find the underlying , the  needs to be “unwrapped”. Usually, this unwrapping
is accomplished unambiguously. However, in some cases it has proved to be impossible to perform
this unwrapping to a satisfactory level. Unfortunately, these datapoints had to be discarded.
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Inhomogeneous density fields

 

4.2 Inhomogeneous density fields

 

In eq. (4.1), the interference order  is independent of the x-position of the observation plane of
the interferogram since the starting point is that the light travels along a straight path through the
fluid. However, near the heater, density gradients will arise upon heating resulting into an inho-
mogeneous refractive index field in which light is deviated according to Snell’s law. Fortunately, in
the bulk of the fluid the light is not deviated since the bulk response to local heating generally is
homogeneous (PE) and the gradients in the boundary layers at the window and mirror merely
affect the optical path length but not the direction of the propagating light. To a large extent, the
effect of the deviation of the light rays may be dealt with conveniently by proper focusing of the
optical system 

 

[37]

 

. In this section we review the paths of light rays through inhomogeneous fields
and proper focusing.

 

4.2.1 Deviation of Light Rays

 

It is implicitly assumed that geometrical optics can be applied to describe the propagation of light
through the inhomogeneous sample. The condition 

 

[64]

 

 for this is that the relative change of the
refractive index over one wavelength is small, hence

.

 

(4.2)

 

Due to the density gradient following linear heating, light rays passing through the sample will
meet with higher density and hence with higher values of the refractive index, the further away
from the heater they pass through the sample. Therefore the rays will be bend away from the
heater. This bending is governed by the generalization of Snell’s law, which states that for one ray

 

(4.3)

 

where  is the angle between the ray and the horizontal plane as illustrated in fig. 4.2.

 

Figure 4.2

 

Geometry of a light ray passing through an optically inhomogeneous 

 

sample.

 

In order to obtain a relation  for the path of the ray, eq. (4.3) has to be differentiated with
respect to . Since , this yields
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(4.4)

 

And,  is determined by the differential equation

 

(4.5)

 

As an example, we present in fig. 4.3 the light paths for beams entering a sample of carbondiox-
ide, subject to the earth’s gravitational field. They are reprinted from ref. 

 

[72]

 

. We see that, much as
expected, the light rays are curved stronger in areas of higher gradients. Very close to CP, where
the fluid is highly stratified in a small region, this leads to the phenomenon of ray crossing.

 

Figure 4.3

 

Gravity induced deviation of a beam of light in a critical sample at 
various temperatures; the dashed line indicates the level at which 
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(the meniscus).

 

4.2.2 The parabolic approximation

 

When the fluid is heated by the gold layer, light rays will meet with higher density the further
away from the heater they pass through the sample. Therefore the rays will bend away from the
heater as illustrated in fig. 4.4. Also indicated are the path of the undeviated ray and the virtual
straight path inside the fluid deduced from the exit angle  of the light ray. In the interferometry
chamber, through the sample, the light overpasses a distance  (= 16 mm) twice as the beam is
reflected by the mirror, so that . The mirror position is represented in fig. 4.4 by the
dashed line in the middle of the heater to account for this double passing.

1
n
---dn

dz
------ dϑ

dx
-------=

z x( )

d2z

dx2
--------

d
dx
------ ϑtan 1

dz
dx
------ 

  2

+
 
 
  dϑ

dx
-------= =

ϑ
D

L 2D=



47

Inhomogeneous density fields

Figure 4.4 Schematic representation of the path of a ray through the sample.

In order to find the actual path of the ray we turn to eq. (4.5) by which the path is determined in
an inhomogeneous field. Ignoring higher order terms, we find for a ray entering parallel to the
heater at :

. (4.6)

When we assume that the gradient of the refractive index is constant along the path of the ray, the
second term on the right hand side of eq. (4.6) vanishes. In this approximation the light path
describes a parabola and, therefore, often is called the parabolic approximation (PA).

When rays are deflected, the interferograms no longer can be described in terms of plane wave-
fronts and imaging effects become important. Under these conditions  is no longer inde-
pendent of . The corrections to be made to eq. (4.1) to account for refraction by the fluid are
given by Hauf and Grigull [73] for the case that the detection plane is placed in the focal plane of
the middle of the sample (in our configuration the mirror). In “The parabolic approximation” on
page 105 (section E.1), it is calculated under which experimental circumstances the PA is valid.

In the PA the intersection of the undeviated path and the virtual path lies halfway the sample,
i.e. at the mirror, and, therefore, focusing of the detection plane onto the mirror means that a ray
entering at a height  will meet the detection plane at the same height as the undeviated ray
would. The advantage of focusing this way is that at all times the same correspondence exists
between the entrance location of a light ray and its position in the interferogram, independent of
the deflection angle. Furthermore, the image of the fluid adjoins the image of the heater resulting
in a maximum resolution without overlap between the two. However, a correction to eq. (4.1) is
necessary.

By the curvature of the light ray the geometrical path inside the fluid is increased. An essential
property of image formation by an optical system is that there exists for each point, within certain
limits, an image point such that the optical path is the same by any of the possible routes through
the optical system. This means that it is possible to trace both the real light ray as well as the unde-
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viated ray to the same point so that both the optical paths are equal. Imaging this way enables the
use of eq. (4.1) without corrections. Both Becker [37] and Svensson [74] found that, in the PA, the
increase in optical path is compensated for by focusing on . Still, focusing in this way
introduces a dependence on time of the imaged position. For more accurate approximations of the
light paths no plane exists for which the interference order in the entire interferogram is described
by eq. (4.1).

4.2.3 Influence of the cold walls

The temperature profile at the heater is generally given by eq. (A.23). In section 2.2.3 it is argued
that the deviation from uniformity may be approximated by the constant pressure result of
eq. (2.38). However, near the entrance window and the mirror the profile is disturbed by the tem-
perature gradients that arise near these ‘cold’ boundaries. In order to determine the effect of this
on the interferogram we solved numerically the light paths through the fluid for a two-dimen-
sional density field. An exact calculation of the density field in two dimensions both near the
heater as well as near these boundaries proves to be a very complicated task. Since we expect the
disturbance of the general profile perpendicular to the heater to be only a small side effect, we start
with an approximated density field. For this approximation we turn to the temperature profile at
the ‘cold’ boundaries far from the heater, i.e. eq. (A.14). The effect of the bulk temperature change
on the profile near the ‘cold’ boundaries we extrapolate towards the heater according to

, (4.7)

where  is determined by eq. (A.14). The corresponding density field follows from this tem-
perature field simply by the application of eq. (2.46). The outcome of the numerical simulations is
that for situations where the parabolic approximation is valid, the effect of the ‘cold’ boundaries
on the interferogram is negligible.

4.3 Shadow evaluation

In interferometry, usually, the components of the superposition are supposed to be parallel beams,
so that imaging effects are not important. However, from the previous sections it has become clear
that, when dealing with inhomogeneous fluids, proper focusing is of paramount importance. In
the laboratory equipment we were able to arrange the optics to our requirements, but this was not
possible for the CPF. In the actual CPF configuration, for our SCU neither the CCD nor the pho-
tocamera optical systems are focused in either of the two ways suggested in section 4.2.2, i.e. on
the mirror or on . Consequently, for the region close to the heater, where ,
serious corrections to eq. (4.1) are required; these involve the interference order as well as the
image position. Unfortunately, this makes the ’image restauration’ unnecessary complex and
greatly reduces the accuracy with which the -profile can be determined. The determination of

 from , based on eq. (2.38) therefore becomes unfeasible and the development of an alter-
native procedure is required.
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Shadow evaluation

4.3.1 The appearance of a shadow

In the PA, focusing onto the middle of the sample, i.e. the mirror, results in an obvious relation
between the locations in the fluid and in the interferogram; the image of the fluid adjoins the
image of the heater so that the space-coordinates just are scaled by the magnification of the optical
system. When the optical system is focused differently, or, analogously, when the film of the cam-
era is positioned at a location different from the image plane of the mirror, upon heating with the
gold-plate a ‘shadow’ will arise in the interferogram between heater and fluid. In order to clarify
this phenomenon, a schematic representation of the path of a ray in the PA passing through the
sample entering at position  parallel to the heater is displayed in fig. 4.5.

Figure 4.5 Schematic representation of the path of rays through the sample and the 
optics to the image plane and camera-film.

The ray entering the interferometry chamber parallel to the heater will exit under an angle 
w.r.t. the heater. From the previous section 4.2.2, in the PA a ray entering at height  leaves the
cell seemingly coming from the mirror at this height . When  is the linear magnification of
the optics, a ray entering at height  will meet the image plane at position  according to

. (4.8)

When the camera-film is positioned at a distance  from this image plane, the ray will meet the
film plane differently w.r.t. to a ray undeflected by the sample as indicated in fig. 4.5. When  is
the angular magnification of the optics so that the (exit) angle  is magnified to  through

, (4.9)

the deviation  w.r.t. the undeflected ray in the film plane is:

. (4.10)
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Thus, accounting for the magnification  in the film plane, in the PA a ray entering at position 
will be detected at a position  according to

. (4.11)

Since all rays will bend away from the heater, locating the film at a position different from the
image plane of the mirror causes a part of the interferogram to be unexposed by the beam passing
through the fluid. No interference will happen in this region leading to what appears to be a
‘shadow’ adjacent to the position where the heater is projected . An example of such an
interferogram is displayed in fig. 4.6.

Figure 4.6 An example of a shadow adjacent to the heater.

In order to relate the imaging properties to the refractive index (or density-) gradients in the
sample, we define an average gradient along a ray  by

, (4.12)

where  is the total length of the ray through the sample. Ignoring terms beyond  in eq. (4.6),
we find for a ray entering parallel to the heater at :

, (4.13)

Note that in the parabolic approximation

. (4.14)

According to eq. (4.4), the angle  then is

. (4.15)
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Shadow evaluation

The real path of a ray entering at  may leave the cell seemingly coming from the mirror at a
different height than  (see also section E.1.2). To account for this difference  at the mirror,
we rewrite eq. (4.11) to the general relation describing the detection in the film plane of a ray
entering parallel to the heater:

. (4.16)

Ignoring terms beyond  in eq. (4.6), we find for a ray entering parallel to the heater at :

. (4.17)

Not surprisingly, in the parabolic approximation .

4.3.2 An alternative procedure

The density field following heating by the gold-plate will have a gradient high at the heater 
and decreasing with increasing distance from the heater. Figure 4.7 shows two types of deviations
(I and II) w.r.t. a parallel beam as a result of this kind of density field. In this figure, the detected
position  at the film plane is displayed versus the entrance distance  to the heater. When the
deviations are such that  for , the size of the ‘shadow’ is determined by the detector
position of the ray entering at . This we will refer to as a type I deviation. For a ray entering
at position , the detector position  is just a function of . The refractive index gradient is
proportional to the density gradient, which at  is proportional to the heat-flux from the
gold-plate into the fluid. This leads to the conclusion that for a constant heat-flux, in the PA the
imaged position  is a constant in time. Thus, a type I deviation results in a constant size of
the ‘shadow’.

Figure 4.7 Deviations w.r.t. to a parallel beam of a beam passing through a density 
field following heating at one side.

However, for relatively small times, the density gradient near the heater rapidly decreases with
increasing distance from the heater. Just as in the case of the strong stratification in a small region
very close to CP, this leads to the phenomenon of ray crossing (see fig. 4.3). The ray entering at

 will cross other rays and will meet the film plane further away from the apparent heater than
some other rays and, consequently, the size of the ‘shadow’ is determined by another ray. This sit-
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uation we call a type II deviation. In type II, the size of the ‘shadow’ is determined by a ray enter-
ing at position  for which:

. (4.18)

Utilizing eq. (4.16), condition (4.18) reads

. (4.19)

When the parabolic approximation is valid, i.e.  is described by eq. (4.14) and ,
eq. (4.19) implies that (for type II) the size of the ‘shadow’ is determined by a ray entering at posi-
tion  for which

, (4.20)

where  is assumed constant along the path of the ray. Combining eq (2.38), that describes the
temperature deviation from uniformity, and eq. (2.57), that relates the temperature and the den-
sity, leads to:

(4.21)

and

, (4.22)

where

. (4.23)

With eq. (4.20)  is found:

, (4.24)

where

. (4.25)

After substituting  from eq. (4.24) into eq. (4.16), again in the PA and utilizing eq. (4.21), some
algebra leads to:

, (4.26)
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, (4.27)

(4.28)

and

. (4.29)

Equation (4.26) gives the position in time of the shadow front upon heating with a constant
heat flux in the PA. In an experiment, from the evolution of this shadow front the value of 
may be determined (see section 6.4). In section E.1 we show that, generally, for heating times
much smaller than  the PA can be used to describe accurately the shadow front development.
Close to CP  is large so that, for realistic heating times, the PA is applicable. Furher away from
CP, where  becomes of the order of realistic heating times, numerical inversion has been used to
determine .

To give an idea as to the values of  and  in the critical region of SF6, in fig. 4.8 both are dis-
played versus the distance to  for a power density of 0.5 W/m2 and the CPF optical layout for
the CCD camera. The CPF optical layout is listed for both the CCD camera and the photocamera
in Table E.1 on page 111. For this case, in fig. 4.9  is displayed for 5 different temperatures in a
wide range above  up to 100 seconds after the onset of heating. Each curve is labelled by its cor-
responding temperature difference from . 

Figure 4.8 Z0 and tm versus the distance to Tc for SF6 and CPF-optics.
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Figure 4.9 zf in time for various temperatures.
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