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Heat transfer in critical 

 

fluids

 

Chapter 2

 

This chapter starts with a brief overview of the properties, dynamic and static, of a fluid near its
liquid-vapour critical point that are encountered in this thesis. Then, the evolution is considered
of the temperature-density field in a compressible fluid, following a plane thermal disturbance into
an otherwise homogeneous sample. Gravity-driven phenomena in a critical fluid are discussed in
the last section.

 

2.1 The critical state

 

2.1.1 Thermodynamic relations

 

The thermodynamic behaviour of a fluid is described by means of a relation between parameters
defining its state: the pressure , the density  (or molar volume ) and the temperature 

 

.

 

 The
thermodynamic static or equilibrium properties may be obtained by the mutual derivatives of
these and the (molar) entropy . The specific heats at constant pressure  and at constant volume

, which measure the heat absorption from a temperature stimulus, are defined by

 

(2.1)

 

where  or . The isothermal and adiabatic compressibilities,  and , measure the
response to a pressure stimulus. These are defined by the relation

 

(2.2)

 

where  or . Also there are the coefficients of thermal expansion,  and , which are
defined by
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,

 

(2.3)

 

where  or .

It follows from these definitions that these quantities are not independent of one another. Partic-
ularly useful relations among them are

 

(2.4)

 

and

.

 

(2.5)

 

The specific heat and compressibility are positive for all , hence eqs. (2.4) and (2.5) imply that
 and 

 

†

 

. From eqs. (2.4) and (2.5) it is elementary to obtain that

.

 

(2.6)

 

Other familiar relations that will be utilized in this thesis are

 

(2.7)

 

.

 

(2.8)

 

2.1.2 Power laws

 

The generally accepted conjecture is to describe the asymptotic behaviour of the various properties
of a fluid near its liquid-vapour critical point (CP), along selected paths in the phase diagram, in
terms of simple power laws. With these power laws, critical exponents and power-law amplitudes
are introduced. For an exact treatment of this conjecture we refer to e.g. ref. 

 

[14]

 

.

In the power law description, it is assumed that the properties vary (asymptotically on approach-
ing CP) as a simple power of the distance to CP, expressed either in temperature, density or pres-
sure. With ,  and  denoting the temperature, density and pressure at the critical point
respectively, we introduce 

 

,

 

 the reduced temperature difference, , and, analo-
gously, , the reduced density difference,  and , the reduced pressure difference,

 

‡

 

. One then has, in the limit ,

 

(2.9)

 

and

 

† In particular, as ,  and .

‡ Customarily, in literature the symbol 

 

π

 

 is used for the reduced pressure difference . To avoid confusion with the 
value 

 

π 

 

, a different symbol is used.
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(2.10)

where the path is the critical isochore.  and  are called the critical power-law amplitudes and 
and  the critical exponents. Along the critical isotherm, the variation of the pressure with density
is given by

, (2.11)

and for , the asymptotic shape of the coexistence curve is given by

, (2.12)

where  and  are the amplitudes and  and  are the exponents.

From eqs. (2.4)-(2.8) it follows that the divergences of  and  are equal to that of , and
that the divergences of  and  are equal to that of .

A relevant length scale in the description of critical behaviour is the correlation length  which
characterizes the spatial extent of the fluctuations in the local density. This correlation length is
believed to be the only length scale needed to describe the properties of a critical system [13], and is
represented by

(2.13)

with  the amplitude and  the critical exponent.

A schematic phase diagram of a fluid near its critical point is given in fig. 2.1 in the -
plane. Indicated are the critical point CP, the critical isochore  for  and the curve
picturing the coexisting liquid and vapour densities . The power laws are defined asymp-
totically  along these paths (except of course eq. (2.11)).

Figure 2.1 Illustration of the density-temperature phase diagram.

Systems near a critical point are classified in terms of universality classes that depend on the
dimensionality of the system and on the number of components of the order parameter. Systems
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that belong to the same universality class have the same values for the critical exponents. Pure flu-
ids near their critical point belong to the universality class of three-dimensional Isinglike systems
with one order parameter. Thus, the critical exponents are not fluid-dependent and their values are
equal to those derived for the Ising systems [14,15,43]. Table 2.1 lists the values for these exponents
derived by using the renormalization-group method [15,43,44].

Table 2.1 Universal critical exponents.

Among the various critical exponents general relations exist. Pure thermodynamics implies

(2.14)

and the principle of universality gives us

(2.15)

where  is the dimensionality of the system (for simple fluids: ). For a number of ampli-
tudes one also has interesting interrelationships (see e.g. refs. [45-48]).

2.1.3 Transport properties

Basic transport parameters are the thermal conductivity , the thermal diffusivity  and the vis-
cosity . On approaching the critical point, the thermal conductivity is known to diverge. This
may be reasoned following a simple, heuristic argument. As usually accepted, we write the heat
flux  as a linear function of the temperature gradient. Such an approximation, widely known as
Fourier’s law, defines phenomenologically the thermal conductivity. Thus, we have [49]

. (2.16)

One may argue that when the correlation length  (see eq. (2.13)) becomes large, the heat flux
scales like . With eq. (2.16), this implies that, sufficiently close to CP,  behaves roughly
as . Indeed the critical exponent for  is equal to 0.57 [50], only slightly different from that of .

The thermal diffusivity describes the behaviour of a fluid in a non-static temperature distribu-
tion and is related to the thermal conductivity through

. (2.17)

Unlike the thermal conductivity, the thermal diffusivity vanishes on approaching the critical point
since the divergence of , although considered strong, is less than that of . Near the critical
point,  should satisfy a Stokes–Einstein relation [51-53]

, (2.18)

where  is a dimensionless universal amplitude. The viscosity displays a weak divergence [53],

, (2.19)
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where  is a system-dependent constant and  is a universal critical exponent equal to 0.063 [50].

2.2 Heating a critical fluid

To describe the processes of heat transfer in terms of the transport parameters, we consider the
transient heating of a critical fluid confined in a fixed volume , initially at uniform temperature
and in equilibrium with its surroundings. The transient heating of the fluid is accomplished by the
application of a heat flux  into the fluid, at a heater surface  deposited on a substrate entirely
contained within the fluid. The heat is generated at constant power, starting at time . Since
during the heating process heat may be dissipated from the fluid into the various walls of the
fluid’s container, we will have to consider the effect of this as well. We will study the evolution of
the temperature-density field in the fluid over a period of time following the start of the heating.

2.2.1 Heat transfer equation and the Piston Effect

In order to find an expression for the temperature field in a locally heated fluid, one might investi-
gate the problem theoretically by seeking solutions of the fully non-linear Navier-Stokes equa-
tions, subject to appropriate boundary conditions but in the absence of a gravitational field. This is
a very complicated task and, therefore, two somewhat simpler approaches have been adopted in
literature. Both of these approaches recognize the existence of two different time scales, namely an
acoustic time scale ranging from microseconds to milliseconds and a conduction time scale rang-
ing from seconds to hours or, in fluids very near their CP, even days. In the first simplified
approach [24], the unsteady linearized Navier-Stokes equations are solved separately in both
regimes. In the second approach [22,23] only time scales much longer than typical acoustic times are
regarded and, starting from the general equation of heat transfer which expresses the law of conser-
vation of energy, a heat transfer equation is derived which only has to take into account the ther-
mal conduction and compression-work terms, ignoring fluid flow effects.

The existence of these two time scales is most readily understood by considering the pressure.
On the (short) acoustic time scale, local fluctuations, caused by heating, propagate through the
fluid as pressure waves; the pressure is neither constant in time nor spatially uniform. On the
(longer) conduction time scale, the pressure in the system is essentially spatially uniform though
not necessarily constant in time. For the purpose of the experiments described in this thesis, it is
sufficient to look only at time scales much longer than typical acoustic times and therefore more
convenient to adopt the second approach. The heat transfer equation [54], describing the thermal
field in a non-viscous compressible fluid, then reduces to [22,23]

. (2.20)

Without the first term on the right hand side eq. (2.20) is the familiar Fourier equation governing
heat conduction in incompressible fluids at rest, where temperature changes occur through ther-
mal diffusion at constant pressure. However, in general, in a fluid kept at constant volume the
pressure increases with time when heating. The first term on the r.h.s. of eq. (2.20) describes the
effect of this. It represents a mechanism known as the ‘Adiabatic Effect’ (AE) or ‘Piston Effect’
(PE) [21-24]. Equation (2.20) shows that, for time scales much longer than acoustic times, this pres-

Q0 ζ

V

q f Sh

t 0=

dT
dt
------- 1

cv

cp
-----– 

  T∂
p∂

------ 
 

ρ

dp
dt
------ 1

ρcp
-------- ∇ λ T∇( )⋅+=



 2 – Heat transfer in critical fluids

12

sure term acts uniformly across the entire fluid thereby leaving any existing temperature gradients
unaltered.

The importance of the pressure term hinges on the factor  which depends on
the ratio of the specific heats and on the isochoric thermal pressure coefficient , two equi-
librium thermodynamic quantities. Typically, in fluids the pressure coefficient varies weakly and
the ratio of the specific heats is of order unity. However, for a fluid near its liquid-vapour critical
point, whereas  behaves smoothly, the ratio of the specific heats  decreases strongly
on approaching CP. Consequently, the contribution to the temperature dynamics of a variation of
pressure with time in a fluid close to CP may differ significantly from the effect far away from CP.
The second term on the r.h.s. of eq. (2.20) (the conduction term) contributes only in the region
where temperature gradients are present. This term often is simplified to †, disregarding the
spatial dependence of . Indeed, numerical simulations show that, with heating pulses typical to
the experiments described in this thesis, the resulting temperature and density changes are suffi-
ciently small for the various thermodynamic coefficients of the fluid to be considered constant [29].
The vanishingly small thermal diffusivity of a critical fluid renders the second term on the r.h.s. of
eq. (2.20) small; the temperature change due to a gradient slows down dramatically on approach-
ing CP. Physically, the fact that the thermal conductivity diverges means that all heat generated in
a heater is transmitted directly into the fluid and not in the heater substrate in accordance to Fou-
rier’s law (eq. (2.16)). However, the heat is confined in a very thin layer of fluid close to the heater.
Actually, the rapid heating and expansion of the fluid in the boundary layer generates a uniform
compression of the bulk of the fluid which causes an isentropic temperature increase throughout
the fluid. The first term on the r.h.s. of eq. (2.20) expresses just this isentropic temperature
increase:

. (2.21)

Effectively, the relative contribution of the pressure term to the temperature dynamics increases on
approaching CP. Close to the critical point, the different characteristics of the two terms have sig-
nificant consequences which need to be understood before one attempts to make measurements of
any transport parameter.

A one-dimensional representation of the expected temperature profile in the fluid after the onset
of heating is visualized in fig. 2.2. The fluid is heated from the left. In this figure, the diffusion
layer at the heater side and the additional uniform temperature increase of the bulk fluid 
caused by the PE are indicated. The accent circumflex on quantities refers to the differences from
their initial values. It should be realized that, with the instantaneous increase in temperature of the
entire fluid, a temperature gradient is created between the fluid and the fluid’s container walls, ini-
tializing an outward flow of heat through these walls immediately after the onset of heating. At
these walls, a diffusion layer will arise also as is shown in this figure. These walls, at which no heat
is generated, are referred to as the ‘cold’ walls.

† The difference being the term , which takes into account the spatial dependence of the thermal con-

ductivity. Generally, this term is negligible in comparison to .
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Figure 2.2 The temperature profile after the onset of heating.

2.2.2 Isentropic temperature rise

This section is devoted to the calculation of the temperature rise in the bulk following transient
heating, in the approximation that the various thermodynamic coefficients do not vary during
heating. In order to find an expression that describes this bulk temperature rise, we will start by
considering the temperature rise in the bulk when a quantity of heat  is introduced into a small
subvolume  of the fluid, whose total volume is . If the fluid is free to expand so as
to avoid any change in pressure, the temperature and volume of  will change by

(2.22)

and

, (2.23)

respectively. But now, as a second step, the pressure is increased so as to reduce the entire volume
by an amount  back to its original value , thereby cancelling the expansion represented by
eq. (2.23). This is accomplished without any entropy exchange, as described by the adiabatic coef-
ficient . Substituting  into the definition for , eq. (2.3), and utilizing eqs. (2.7)
and (2.22), yields the temperature rise in ,

. (2.24)

The subvolume  undergoes the same adiabatic temperature increase. The resulting rise in the
average temperature  for the whole volume is the sum of direct heating on  and the adia-
batic contribution,

, (2.25)

and is determined, as to be expected, by , the constant volume specific heat.
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Dividing up the process envisioned above into two steps is not essential. The pressure and
entropy changes can occur simultaneously so as to keep the total volume unchanged at all times.
We may reformulate eq. (2.24) to continuous heating of a critical fluid, so that for a heat flux 
the temperature rise outside of the boundary layer in the bulk fluid is:

. (2.26)

In eq. (2.26),  represents the heat losses to the cell walls in a real experiment. As explained ear-
lier, these losses from the sample must be taken into account, for the diffusion layers at these cell
walls (shown in fig. 2.2) act as inverse pistons, or more clearly; isentropic cooling begins simulta-
neously with the isentropic temperature rise.

Ferrell and Hao [55] studied analytically such a combined heating-cooling process, accounting for
the available (for heat exchange) surface area of the container walls and the transport properties of
both the fluid and the walls. They present the time dependence of the bulk fluid temperature fol-
lowing the introduction of a pulse of heat  into the fluid all at one instant . Avoiding the
long-term behaviour of the fluid, when the developing boundary layers reach the size of the char-
acteristic length of the cell, we reproduce from their work the solution of eq. (2.26) in their spe-
cific case:

, (2.27)

where erfc(=1-erf) is the complimentary error function and

. (2.28)

The characteristic time  for the isentropic equilibration is defined as:

. (2.29)

Here

(2.30)

represents  times a weighted sum over the surface areas  of the  different wall seg-
ments ; the weight depends on the inverse thermal impedance ratio , defined as

, (2.31)

where  is the thermal conductivity and  the thermal diffusivity of the material of the th wall
segment.

Ferrell and Hao [55] analyzed eq. (2.27) and concluded that, as CP is approached  and
the fluid thermal impedance drops below that of the walls, a crossover takes place from a rapid
decrease in characteristic time , relatively far away from , to a weak increase in , propor-
tional to the square of the constant volume specific heat.
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Complementing the work of Ferrell and Hao [55], for the case that energy is applied to the fluid,
not instantaneously but continuously, eq. (2.27) is modified to

, (2.32)

where  represents the time dependent energy flux to the fluid. If further, heating pulses of con-
stant flux are utilized to stimulate the fluid then  and eq. (2.32) becomes accordingly

, (2.33)

which after some algebra leads to

, (2.34)

where

. (2.35)

This  represents an apparent amplitude in eq. (2.34). Obviously,  strongly depends on the dis-
tance to CP. Close to CP, where  scales proportional to  (in the region where  and

), it follows from eq. (2.35) that  scales proportional to .

Now, it is interesting to look at the critical dependence of the behaviour of the bulk temperature
rise following transient heating. Analysing eq. (2.34) reveals two limiting cases. Far from ,
where the thermal impedance of the fluid is much larger than that of the boundaries of the system,
i.e. , eq. (2.34) reduces to

, (2.36)

which indicates that the total surface area of the fluid’s container is the most important parameter
for the determination of the heat-loss. The prefactor in the temperature increase is then dictated
mainly by the ratio , the thermal impedance of the fluid. As CP is approached and the ther-
mal impedance of the fluid drops below that of the boundaries of the system, eventually , in
which case eq. (2.34) yields

. (2.37)

As can be seen, for this particular limiting case it is the transport properties of the boundaries that
govern the thermal behaviour of the system. At first sight this is somewhat surprising since one
would rather expect the temperature rise in the bulk  to vanish as the isochoric specific heat
diverges. A closer look at eq. (2.37) uncovers that the expected slower temperature increase is
incorporated in eq. (2.37) into the second term between brackets which counteracts the first term
faster and longer for higher values of . Interestingly, in either case – far from or close to  – for
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 a simple relation is obtained which predicts an isentropic temperature change proportional
to the square root of the heating time.

2.2.3 Boundary layers and the Piston Effect

Now that the piston effect has been explored, the attention is directed to the boundary layers and
the influence of the PE on these. In appendix A, the differential equation (2.21) is solved for a
constant power heat source at the interface of fluid and wall in the approximation that the various
thermodynamic coefficients do not vary during heating. Expressions are found for the temperature
field near the heater as well as at the ‘cold’ walls.

Without the PE or at constant pressure the temperature field  is given by eq. (A.22);

, (2.38)

where ierfc is the integrated complimentary error function. The solution is one-dimensional in the
direction perpendicular to the heater surface. The effective diffusion layer thickness, , that is
implied by eq. (2.38) is

. (2.39)

In this situation, the generated heat is divided between the fluid and the heater substrate by a con-
stant ratio (eq. (A.21)). For a temperature field as described by eq. (2.38) it is possible, in an exper-
iment, to find directly the thermal diffusivity  and the thermal conductivity , by fitting
eq. (2.38) to -data sets.

However, the inclusion of the PE introduces additional heat flows at all boundaries and, conse-
quently, changes the temperature profile, as indicated in fig. 2.2. At the ‘cold’ walls these addi-
tional heat flows lead to a temperature profile as calculated in appendix A. With

, (2.40)

the temperature profile in the fluid  at the boundary segment  may be written as
(eq. (A.14)):

, (2.41)

where  is a function defined by eq. (A.16).

At the heater itself, the PE also affects the boundary layer. The additional temperature rise dis-
turbs the constant ratio at which the generated heat is split up between fluid and substrate and
results in a time dependent heat flow into the fluid (see eq. (A.24)). Since the calculations above
are based on a constant heat flow into the fluid, this is bothersome. However, as advances from the
results in appendix A, the PE and its consequences are completely additive and the heat flow may
be separated into a constant heat flow following from the isobaric case (eq. (A.21)) and a time
dependent heat flow outwards as a result from the PE. In this view, the heater serves both as a
‘heater surface’ and as a ‘cold’ wall and results as obtained earlier are still valid. The temperature
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profile, though, is no longer a simple profile like eq. (2.38) but a sum of eqs. (2.38) and (2.41). In
fig. 2.3 the expected temperature profile near the heater is displayed as well as the temperature
profile in the isobaric case simply added to . The shaded area in this figure represents the
effect of the PE on the shape of the temperature profile.

Figure 2.3 Temperature profile at the heater.

If the transport parameters are to be derived from the resulting temperature profile at the heater,
it would be preferable if the position dependent part of this profile, , may be con-
sidered as equal to the temperature profile  in the isobaric case; i.e. we would like the
shaded area in fig. 2.3 to be insignificant. Some algebra leads to:

. (2.42)

As shown in appendix B, the second ratio on the r.h.s. of eq. (2.42) is a ratio between two
smooth functions, which is always smaller than 1, tends to unity for  and for  and
tends to zero for  and for . The interesting part is within the effective size of the
boundary layer, , where  (see eq. (2.39)). In appendix B it is shown that, for  is
of the order , this ratio is close to 0.5.

When we look at the prefactor on the r.h.s. of eq. (2.42), we again may consider two limiting
cases. For , or far from , this factor is just the ratio between the surface of the heater 
and the sum of surfaces of all surrounding walls . For , or close to , the thermal
impedances of the walls come into play, making this term a weighted ratio. When  and the
thermal impedance of the heater is not much lower than that of the other walls, this factor is much
smaller than 1. In appendix B, its value for the actual experimental set up is calculated.

It can be deduced from the aforesaid that we may approach the temperature profile near the
heater by a sum of the temperature profile in the isobaric case and the isentropic temperature rise
in the bulk when the surface area of the heater is much smaller than the total of the surface area of
the surrounding walls or the thermal impedance of the heater is much larger than that of the other
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walls. Such an approach would simplify largely the determination of the transport parameters out
of the resulting temperature profile.

2.2.4 Density changes

In order to find an expression for the changes in the density field, we first write

. (2.43)

If we substitute  from eq. (2.21) into eq. (2.43), we obtain after some algebra the expres-
sion

. (2.44)

It is convenient to introduce the deviation from temperature uniformity

, (2.45)

where  is the bulk temperature. If we realize that the PE-term in eq. (2.21) is just the time
derivative of the isentropic bulk temperature change and that, consequently, the second term on
the r.h.s. of eq. (2.21) represents the time derivative of , substituting  into
eq. (2.44) leads after some algebra to

, (2.46)

a relation that enables us to find the density field from the corresponding temperature field.

Equation (2.46) readily demonstrates that the PE alters the density essentially proportional to
the temperature, regardless of the distance to the critical point or of the way heat is applied to the
fluid. When the fluid is heated, starting from a uniform temperature profile, the second term on
the r.h.s. of eq. (2.46) is, in the region outside the developing boundary layer – i.e. in the bulk –,
by definition zero. Therefore, provided that the possibly existing density gradients are small
enough, simultaneous measurements of temperature and density in the bulk can provide the isen-
tropic thermal expansion coefficient .

2.3 Bulk temperature induced boundary layers

Earlier, it has been pointed out that, actuated by the PE, at every boundary a diffusion layer will
start to develop the moment the fluid is heated. Hence, the temperature-density fields at bounda-
ries at which no heat is generated, i.e. the ‘cold’ walls, are dictated by the evolution of the bulk
temperature. In the preceding sections the temperature-density field has been determined for a
specific rise of the bulk temperature, namely the one associated with linear heating. In this section,
we will consider the developing temperature-density field at the ‘cold’ walls for an arbitrary bulk
temperature rise.
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Bulk temperature induced boundary layers

2.3.1 Temperature lag

An example of the temperature changes at a ‘cold’ wall is displayed in fig. 2.4. Indicated are the
bulk temperature change , the deviation from temperature uniformity in the fluid at the
boundary segment   and the temperature profile in the wall material .

Figure 2.4 Temperature change near a ‘cold’ wall.

It turns out to be possible to deduce a simple relation between the bulk temperature change and
the average temperature change  in a layer of thickness  at a ‘cold’ wall. This average temper-
ature change may be expressed in terms of the bulk temperature change as follows:

, (2.47)

so that the ‘reduced temperature lag’  is defined as the relative contribution of the temperature
changes in the boundary layers to the average temperature change. This definition implies

. (2.48)

In order to work out further the description of , we transcribe the integral part in the Laplace
space:

. (2.49)

Substituting from appendix A eq. (A.10) into eq. (2.49) one finds

. (2.50)

The inverse Laplace transform of the r.h.s. of eq. (2.50) is [56];
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, (2.51)

and, with eq. (2.39), eq. (2.48) becomes

, (2.52)

where . Substituting  and restricting the analysis to the case in which
the developing boundary layer is much smaller than  , the integral, , in eq. (2.52)
becomes

. (2.53)

Equation (2.53) shows that  is determined by the history of the bulk temperature change. Hence,
in the interpretation in a real experiment, the evaluation of  depends on the evolution of the
bulk temperature. For a monotone bulk temperature change, it is found easily that  and
an upper limit for  may be given.

The combination of eqs. (2.52) and (2.53) leads to:

, (2.54)

where

, (2.55)

showing that when  is time-independent  simply is proportional to . Equation (2.55)
implies a very strong decrease in the factor  as CP is approached since both  and  vanish on
approaching CP. Equation (2.54) can be expressed conveniently in terms of  (eq. (2.39)):

. (2.56)

Not surprisingly, for  we find .

It follows from eq. (2.53) that  is time-independent if  can be written as a function of the
variable . In appendix C it is shown that, in that case,  must be proportional to  in
which case  can be calculated easily as a function of . The result is shown in fig. 2.5. It can be
shown more generally that for any realistic time dependence of  the time dependence of  is
of little consequence.
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Bulk temperature induced boundary layers

Figure 2.5 I as a function of µ.

2.3.2 Excess density

In order to explore the effect on the density field, we define, in analogy with the deviation from
temperature uniformity, the deviation from density uniformity , where

 is the bulk density. The density profile that correponds to the temperature profile in fig 2.4
is displayed in fig. 2.6, in which  and  are indicated. The density profile in the
boundary-layer results from a temperature profile at spatially uniform pressure, therefore:

. (2.57)

Whereas the temperature changes in the boundary layer are smaller than the bulk temperature
change, the density changes in the boundary layer are larger than the bulk density change.

Figure 2.6 Density change near a ‘cold’ wall.

Analogous to , we may define a ‘reduced excess density’  by:

, (2.58)

where  is the average density change. Note the sign in this relation. Equation (2.58) implies
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, (2.59)

so that  represents the relative contribution of the density changes in the boundary layers to the
average density change in a layer of size . In order to relate  to , we first realize that the bulk
density change  relates to the bulk temperature change  as:

. (2.60)

Substituting eqs. (2.57) and (2.60) into eq. (2.59) and utilizing eq. (2.7) results in an expression
for  in terms of the temperature profile and finally in terms of ;

, (2.61)

where

. (2.62)

Whereas we could conclude easily that  diminishes on the approach to CP, in the case of 
we have to look closer because of the divergence of . Far from CP, where  is of order
unity, we may conclude that, for , also . Furthermore, for , the critical
dependence that remains is

, (2.63)

implying an increase in  approaching CP considering the increase of  and the weak
decrease of . As CP is approached and the thermal impedance of the fluid drops below that of
the boundaries of the system, eventually , in which case eq. (2.62) yields (with eq. (2.31)
and (2.17)) a critical dependence as

. (2.64)

Interestingly, eq. (2.64) shows that, eventually,  decreases on approaching CP as the inverse of
the specific heat at constant volume. The actual location of the maximum depends of course on
the fluid and the wall material concerned. In fig. 2.7, an example is given for a 8 mm layer of SF6
at a quartz wall, where .
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Gravity effects

Figure 2.7 The critical dependence of E.

In conclusion, for any realistic bulk temperature rise the relative contribution of the changes in
the temperature-density field at a ‘cold’ wall to the change in average temperature-density field
scales like the square-root of the heating time. Such a simple description allows the determination
of  by the measurement of , which together with the simultaneous measurement of

 can provide  as eqs. (2.58) and (2.60) combine to

. (2.65)

As long as the effective diffusion layer thickness is much smaller than the layer over which is aver-
aged, the relative contribution of the -term is small. Moreover, in cases where this contribution
is not entirely negligible, knowledge of the time-evolution of  allows a reasonable estimate for

 (see eq. (2.62)). Subsequently, the otherwise difficult to measure value of  is determined easily
from  on account of their interrelationship as expressed by eq. (2.8); the other quantities in this
expression are well known and finite, even near CP.

2.4 Gravity effects

On earth the behaviour of fluids near their critical point is strongly influenced by gravity. In the
gravitational field, the large compressibility of such fluids induces two major effects; a stratification
of the fluid forming a density gradient and a strong increase of the susceptibility for convective
instability as expressed by the Rayleigh number. In the next sections these gravity-driven phenom-
ena are discussed in order to elucidate the requirement for strongly reduced gravitational levels,
such as provided by Spacelab. In the last section it is argued that gravity also may be put to advan-
tage when it is used to monitor the average density of a fluid sample.

2.4.1 Density stratification

In the discussion up to this point it has been assumed that the fluid is macroscopically homogene-
ous. Therefore, the regions over which the integrations are carried out, or through which a beam
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of light propagates, were supposed to be characterized by spatially constant values for the thermo-
dynamic values ,  and . On earth, a critical fluid is subject to a gravitational force and it will
be compressed under its own weight. This is compensated for by a gradient in the pressure (the
hydrostatic pressure profile) which, in thermal equilibrium, is given by

, (2.66)

where  is the direction of the acceleration of gravity  and  is the molar mass. Using eq. (2.2)
it is found that this results in a density gradient given by

. (2.67)

Due to the divergence of  at the critical point, the actual critical conditions are reached only
very marginally and local properties may no longer be identified with those of the fluid as a bulk.

In fluids near their critical point, already in small cells density differences are found that, other-
wise, are found typically only on an atmospheric scale. To illustrate this, an example of the stratifi-
cation for SF6 for different temperatures near  is shown in fig. 2.8. Each curve is labelled by its
temperature difference from .

Figure 2.8 Gravity induced density gradients.

As a consequence of such substantial density gradients, small volumes at different heights within
the sample will not be in the same thermodynamic state and the response of the fluid to a plane
thermal disturbance will be strongly dependent on height. Also, the transmission and scattering of
light will not merely depend on the value of the refractive index but also on its derivative. A ray of
light is deviated in an inhomogeneous refractive index field (see Chapter 4).

2.4.2 Heating a critical fluid

The response of a critical fluid to a temperature stimulus was calculated in the absence of a gravita-
tional field. In gravity, apart from complications resulting from the density stratification, one has
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to consider the susceptibility of a near-critical fluid to convection. Convection instabilities are gov-
erned by the Rayleigh number [49]

, (2.68)

where  is a temperature difference over a height  in the direction of gravity. The high value of
the isobaric thermal expansion coefficient leads inevitably to convective motion when temperature
disturbances are imposed on the near-critical system.

The phenomenon of convection in compressible fluids has been addressed by several authors [57-
61]. Boukari [61] expects from earlier studies that the criterion for the onset of convection changes
from the Rayleigh criterion [57] to the Schwarzchild criterion [58] when a critical fluid is brought
closer to the critical point. According to this criterion, convection is suppressed when gradients in
the direction of gravity are smaller than the adiabatic temperature gradient [59]

. (2.69)

Boukari [61] concludes that the adiabatic temperature gradient represents a stabilizing factor against
thermal convection for a critical fluid. Although, according to these findings, a critical fluid is
more stable than predicted by the Rayleigh criterion, convection remains a serious concern. A
quick calculation of  for SF6 shows that its value is close to 1 mK/cm at  and tempera-
tures within 1 K from . The gradients that occur in the experiments described in this thesis
often exceed this value.

To a large extent, positive temperature gradients in the direction of gravity may be avoided by
conveniently facing the heater downwards. Generally, heating this way the denser parts are found
lower into the fluid, in which case convection does not occur. However, due to the PE, gradients
will appear on all walls of the fluid’s container, including vertical walls at which convection is lia-
ble to arise. Since one likes to observe the system parallel to the stratification, i.e. parallel to the
heater, in a real experiment these vertical boundaries are impossible to exclude from the field of
view. Therefore, whenever convection arises, the field of view most likely will be disturbed by it.

2.4.3 The two-phase region

Below the critical temperature, a fluid may be in a state of two coexisting phases with different
densities for the vapour  and the liquid  phase. In a gravitational field, the liquid phase is
always situated in the lower part of the sample container. The actual position of the meniscus is
determined by the difference in density between vapour and liquid (as is determined by the dis-
tance to the critical temperature), the average density and the geometry of the sample container. It
follows from the classic law of rectilinear diameter that, at temperatures sufficiently close to ,

. As a consequence, for an average density equal to the critical density the meniscus
will be at the volumetric middle of the container. When the average density is different from the
critical density, on approaching the critical temperature, the meniscus will always move away from
this middle. This may be clarified as follows: In a container of fixed volume, two processes take
place when the sample is heated. The first is that the liquid evaporates; the density of the vapour
increases and the volume that the liquid takes up decreases. The second is that the liquid expands;
the density of the liquid decreases and the volume it takes up increases (The vapour is more easily
compressed and does not expand due to the expansion of the liquid). The effect of the second
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increases for higher liquid volumes and, since for an average density equal to the critical the menis-
cus remains in the middle, we may conclude that the two effects cancel each other out at critical
density. For an average density below the critical, the effect of the first dominates while the second
dominates for average densities above the critical. Hence, except at critical density, the meniscus
will move away from the middle when the temperature is raised towards the critical temperature.

Thus, the position of the meniscus may conveniently be used to determine the average density of
the contained sample relative to the critical density. Moreover, the disappearance or reappearance
of the meniscus on crossing the critical temperature provides an excellent means to fill the con-
tainer at critical density, especially when the equation of state of the fluid concerned is not well
known.


