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Optical matters

 

Appendix E

 

E.1 The parabolic approximation

 

In this section we consider the parabolic approximation (PA) for rays through the inhomogeneous
refractive index field resulting from heating with the gold plate.

 

E.1.1 Conditions for the parabolic approximation

 

In the PA, the assumption is that along the path of a ray the refractive index gradient (and with
that the density gradient) does not change. In fig. 4.4 on page 47 we see the path of a ray through
a sample of length  with a density gradient in the z-direction. In order to find the actual path of
this ray, we turn to eq. (4.5) by which the path is determined in an inhomogeneous field:

.

 

(E.1)

 

When along the path of a ray inside the sample ( )
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and, besides the change in the refractive index gradient, the change in the refactive index  itself is
relatively small, so that
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we arrive at the well known relation for the path of a light ray in the PA 

 

[103]

 

, for a ray entering par-
allel to the heater ( ) at height :

 

(E.4)

 

and

.

 

(E.5)

 

Both conditions (E.2) and (E.3) determine the experimental circumstances for which the PA is
valid.

To derive the values for  and  for specific experimental circumstances, i.e. distance to CP
and input power density, we consider both values in terms of the density gradient. Because the
density gradient is most large nearer to the heater, we may write:

.

 

(E.6)

 

Out of the temperature field near the heater as described by eq. (2.38) and the relation (2.57) it is
found that

,

 

(E.7)

 

out of which the density gradient at  can be found. As an example, in fig. E.1,  is dis-
played versus the distance to  for a ray entering at 100 

 

µ

 

m from the heater, for power densities
of 0.2 and 0.5 W/m

 

2

 

 after heating for 60 seconds.

 

Figure E.1
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1

 

 vs temperature for two different power densities.

 

We see that for all temperatures, at distances of at least 100 

 

µ

 

m from the heater and within 60 sec-
onds, condition (E.2) is met when the power density is below 0.2 W/m

 

2

 

. For power densities up
to 0.5 W/m

 

2

 

, it seems that between 5 and 100 mK from  one has to be careful in interpreting
the results for distances as close as 100 

 

µ

 

m from the heater.
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The parabolic approximation

To find  for specific experimental circumstances, utilizing eq. (E.7) we may write

. (E.8)

In order to find the density gradient at , we need to find the distance to the heater, , at
which the ray leaves the cell. With eq. (E.4) we find:

. (E.9)

As an example, in fig. E.2, a contour plot of  is displayed versus the distance to  and versus
the entrance distance to the heater  of a ray. The power density in this example is 0.5 W/m2 and
the time after the onset of heating is 60 seconds. 

Figure E.2 A contour plot of C2.

We see that in these experimental circumstances condition (E.3) is not always met. For rays enter-
ing closer than ±200 µm from the heater for almost the complete temperature range the PA is not
explicitly applicable.

In regards to the ‘shadow’, we look at conditions (E.2) and (E.3) for the ray that determines its
size in the PA (entering the sample at height ). For this specific ray, these conditions amount
to:

(E.10)
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, (E.11)

where  is the distance that the ray travels inside the fluid in the z-direction. In the PA this dis-
tance, , is (eq. (E.4)):

. (E.12)

In fig. E.3, both  and  are displayed for the rays that determine the size of the shadow in
the PA, , at 5 different temperatures in a wide range above , i.e. at 1, 10, 100, 1000 and
3000 mK from . The curves higher in the graph correspond to temperatures further away from

. It is seen directly that, for these rays, the first condition is satisfied but the second not quite,
implying that the paths of these rays do not follow the PA to a desired accuracy.

Figure E.3 C1 and C2 in time for zf at various temperatures.

E.1.2 The accuracy of the parabolic approximation

In this section we calculate the accuracy of the PA in predicting the position in the film plane of a
ray traveling through the inhomogeneous density field following linear heating.

We consider the path of a ray in an inhomogeneous density field following linear heating. Since
in such a density field the refractive index gradient will always decrease along the path of a ray (it
bends away from the heater), the real path will be less deviated and will exit the fluid under a
smaller angle (w.r.t. the heater) than in the case of the PA. In fig. E.4 the real path and the path in
the PA are sketched, displaying that the real exit angle  is smaller than the exit angle in the PA,

. Furthermore, as shown in this figure, the virtual path inside the fluid of the real path crosses
the middle of the sample a distance  further away from the heater than the entrance height of
the ray. In the image plane of the mirror the position of the ray will be different accordingly and,
to calculate its position in the film plane, it is the height of this virtual crossing which replaces the
entrance height of the ray, as represented in eq. (4.16). 
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The parabolic approximation

Figure E.4 Schematic representation of the real path of a ray through the fluid 
compared to the path in the PA.

In order to determine the accuracy of the PA, we first write

, (E.13)

where, according to eq. (4.14) and (4.16),

, (E.14)

(E.15)

and

. (E.16)

When the path of a ray is approximated by the PA, the error in the calculation of the position in
the film plane then is determined by the ratio

. (E.17)

When  and  are approximated by eqs. (4.13) and (4.17), one finds

. (E.18)

Not surprisingly, in the parabolic approximation .

For a density field following linear heating, by applying eqs. (4.21) and (4.22) one finds after
some algebra

, (E.19)
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where  and . We see that for both optical layouts (CCD camera and Minolta)
, since  (for  ). The ratio of (E.17) then is:

(E.20)

In fig.E.5 a contour plot of  is displayed versus the reduced values  and . From this plot
we can conclude that, much as expected, the PA is more accurate further away from the heater

. This plot also shows that for a ray entering at a specific height , the accuracy of the PA
depends on the time, with a maximum at a time dependent on .

Figure E.5 A contour plot of ∆z’/z’PA versus z and t.

As a last step, we need to look at the rays  that determine the size of the shadow in time.
When we apply eq. (4.24) in eq. (E.20) we find:

. (E.21)

In fig. E.6 the value of  is displayed versus the reduced time  for SF6 and the CPF optical
layout of the CCD camera. When we compare  to the experimental accuracy in the deter-
mination of the shadow, which is in most cases of the order of percentages, fig. E.6 shows that for

 and for  the effect of the departure from the PA to the size of the shadow is neg-
ligible in comparison to the size calculated in the PA.
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CPF Optical details

Figure E.6 The effect of the departure from the PA to zf in time.

In terms of realistic heating times, power density and distance to , looking at fig. E.6 and
fig. 4.8, the result above suggests that for temperatures closer than about 100 mK from  the PA
can be used safely in the determination of the size of the shadow. Up to 1 K from  the correct-
ness of the PA heavily depends on the power density, where for even higher temperatures the
shadow evaluation cannot be performed on the basis of the PA alone. Numerical simulations of
the light paths through the fluid for a two-dimensional density field (including wall effects as
described in section 4.2.3) support these conclusions.

E.2 CPF Optical details

Table E.1 Optical layout for the CPF.
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CCD 1.404 60.87 1.341
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Note: the SALS date are averaged over sets of four pixels before downlink

Table E.2 CPF Optical diagnostic methods.

CPF
optical
diagnostics Visualisation Attenuation

Interferometry
(Twyman-Green) SALS WALS

Light source LED light He-Ne Laser

1 mW

0.6mm diam.

He-Ne Laser

0.6 mW.

He-Ne Laser

1 mW

0.6 mm diam.

He-Ne Laser

1 mW

0.6 mm diam.

Field of view

(at object)

12 mm diam. 0.63 mm diam. 12 mm diam. - -

Detection

Detector CCD camera

Photocamera

20 first pixels of

SALS CCD

CCD camera

Photocamera

Linear CCD

(Peltier-cooled,

512 pixels)

Photomultiplier

(1 angle at a time)

Angles - - - 0°-30° -22, -30, -38, 66,

74, 82, 90°,

laser input ref.,

dark signal

Sensitivity 10-3-10-7 W/pix. 10-6-10-10 W/pix. 10-8-10-12 W

Intensity

resolution

6 bits/pixel

(CCD digital

downlink)

16 bits linear

(≈0.2%)

6 bits/pixel

(CCD digital

downlink)

8 bits

(logarithmic)

(≈5.5%)

12 bits

(logarithmic)

(≈0.35%)

Acquisition 30 fps 1 Hz or averaged 30 fps 1 Hz or averaged Average over 

300 ms per angle,

7 cycles/min

Downlink

rate

30 fps & 1/6 Hz 1 Hz 30 fps & 16 Hz 1 Hz 7 cycles/min

Resolution

(at object

40 µm (CCD)

20 µm (photoc.)

-

-

Fringe density:

25 mm-1 (photoc.)

10 mm-1 (CCD)

0.25° 2°


