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Appendix C

 

In this appendix we show that when ,  must be proportional to  in which case
the integral  [eq.(2.53)] is time independent. Subsequently,  is calculated as a function of .

We start with a general function  defined for . The assumption is that
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When  is a continuous function then
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and in particular
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For ,  and, necessarily,
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It follows that
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When ,  and  is easily calculated. In terms of the variable ,
for which eq.(2.53) becomes

,
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we find for the value  the relation
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Consequently
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With  and ,  for k is a positive integer can be calculated easily.
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