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B

 

The PE near the heater

 

Appendix B

 

This appendix is devoted to the calculation of the relative contribution of the PE to the tempera-
ture field near the heater for the geometry of our set up. We set out to determine the significance
of the shaded area in fig. 2.3. The ratio between this shaded area and the temperature field in the
isobaric case is offered by eq. (2.42). We start off with the term that is given by the r.h.s. of
eq. (2.42):

,

 

(B.1)

 

where the subscript  refers to a wall segment , the subscript  refers to the heater substrate
,  denotes the inverse thermal impedance ratio between fluid and the  wall material, 

denotes the surface area of the  wall material,  is the function given by eq. (A.16),  is the
reduced space coordinate at the heater (eq. (2.40)) and  the reduced time coordinate
(eq. (2.28)). The term (B.1) is a product of two ratios which are treated separately.

The second ratio in (B.1) is a ratio between two smooth functions which may be rewritten to:

.

 

(B.2)

 

With  and , (B.2) may be rewritten to:
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.

 

(B.3)

 

In ‘Handbook of mathematical functions’ 

 

[102]

 

 the following inequality is presented:

.

 

(B.4)

 

Utilizing this inequality, we may rewrite (B.3) to

,

 

(B.5)

 

with  and .

When ,  in which case  and (B.5) reads:

.

 

(B.6)

 

Since  this term is always smaller than 1. For , immediately we see that this term
asymptotically goes to 1. A minimum is found close to  where . For ,

 and .

When  or ,  in which case  and, consequently, . We see that for
 and  (B.5) reduces to

.

 

(B.7)

 

Within the effective size of the boundary layer, , where  (see eq. (2.39)), we see in
fig. B.1 that for a given   practically remains constant.
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Figure B.1 R within xeff.

In fig. B.2 the behaviour of  at  is displayed as a function of . From fig. B.1 we may con-
clude that this behaviour is characteristic for the boundary layer.

Figure B.2 R at x=0.

Now that we have explored the second ratio in (B.1), we turn our attention to the first. We may
consider two limiting cases. For , or far from the critical point, this ratio reduces to a ratio
between the surface of the heater  and the sum of surfaces of all surrounding walls . For

, or close to the critical point, this ratio yields

. (B.8)

The thermal impedance and the surface of the heater substrate are readily available. As adopted in
section 6.2.3, instead of trying to find for each wall segment the thermal impedance and the sur-
face, the net effect of all walls is described by a single set of phenomenological parameters referred
to as apparent values. Using the values given in table 6.1, for the two limiting cases, we have:
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 for (B.9)

 for . (B.10)

We may conclude that the combined value for the term described by (B.1), within the effective
size of the boundary layer and for times , is always smaller than 5%, decreasing on
approaching the critical point. Moreover, far from the critical point  is of order unity so that, in
that region, (B.1) is even a factor of two smaller, i.e. 2.5%.
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