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Appendix A

 

This appendix is devoted to the calculation of the local temperature of the fluid and its surround-
ing walls when this system is heated by a constant power source. The heat is generated on the sur-
face of one of the walls and propagates perpendicular to this surface into the fluid and into the
heater substrate; i.e. a plane thermal disturbance. The temperature profile is calculated near the
heater and near boundaries where heat flows out, both in the fluid and in the walls. The surfaces
are considered to be flat thereby allowing the calculations to be restricted to one-dimension per-
pendicular to these surfaces. It is assumed that, initially, the fluid’s temperature is uniform and
equal to that of its surrounding walls. The various temperatures are defined as deviations from the
uniform initial temperature. The various thermodynamic coefficients are assumed not to vary dur-
ing heating.

As a first step it is realized that the term in the heat transfer equation (2.21) containing the pres-
sure represents just the contribution of the PE and that this term is not space dependent. There-
fore it may be replaced by the time derivative of the uniform bulk temperature . In this way,
the equations including boundary conditions to be solved for the fluid are:

,

 

(A.1)

 

where  is the thermal conductivity,  the thermal diffusivity and at each wall segment  defined
seperately,  the space-coordinate  and the heat flux per unit surface to the fluid .

For the N different wall segments, we have the usual Fourier equation including boundary con-
ditions for each segment :
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,

 

(A.2)

 

where  represents the temperature,  the heat flux per unit surface,  the thermal con-
ductivity and  the thermal diffusivity of the th wall segment. The boundary conditions that
link the two temperature profiles at each segment  are:

 

(A.3)

 

and

,

 

(A.4)

 

where  is the amount of heat produced on the surface of the th wall per unit surface.

In order to solve this set of equations, we introduce the Laplace transforms

, , , ,  and , where

.

 

(A.5)

 

Now, for each wall segment  eqs. (A.1) and (A.2) may be converted into

 

(A.6)

 

and

.

 

(A.7)

 

After some algebra, boundary conditions (A.3) and (A.4) result in:

,

 

(A.8)

 

where

.

 

(A.9)

 

On approaching the critical point, where  diverges and  vanishes,  tends to 1.

First, we proceed with the calculation of the temperature profile at the ‘cold walls’. In these walls
no heat is produced, so  and the first term on the r.h.s of eq. (A.8) disappears. Then, sub-
stituting eq. (A.8) into eq. (A.6) leads for the th segment to:
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(A.10)

and

. (A.11)

Equations (A.10) and (A.11) both show that the temperature at the th wall (  or
) is proportional to the temperature of the bulk ( ), independent of the actual time-

profile of  and it follows that the ratio between the two is constant in time:

. (A.12)

The actual profile near these walls may only be found when the exact behaviour of the bulk tem-
perature is known. In paragraph 2.2.2, the temperature increase of the bulk of the fluid is calcu-
lated for a constant heat flux and is given by eq. (2.34). In Laplace space this is:

, (A.13)

where K is a constant proportional to the heat flux.

Substituting eq. (A.13) into (A.10) and (A.11) and transforming to normal space leads to the
desired temperature profiles [56]:

(A.14)

and

, (A.15)

with , ,  and

. (A.16)

Here, ierfc is the integrated complimentary error function erfc:

. (A.17)

For , it follows that .

Substituting eq. (A.13) into (A.8) with  and transforming to normal space gives us the
heat flow through the th wall [56]:

. (A.18)

In order to calculate the temperature profile near the heater, the first term on the r.h.s. of eq. (A.8)
must be included. With  and  eqs. (A.10) and (A.11) are modified to
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(A.19)

and

. (A.20)

When there is no adiabatic temperature rise, i.e. at constant pressure, the usual relations [37] for the
heat flow and for the temperature profile are found [56]:

(A.21)

and

, (A.22)

where the subscript  means at constant pressure. The dissipation ratio , addressed in section
6.2.2, is equal to .

Including adiabatic temperature rise, in order to find the temperature profile in the fluid, we
may simply add the two results of eqs. (A.14) and (A.22):

. (A.23)

The same holds for the heat flow and, consequently,

. (A.24)

The temperature profile in the heater adds up to

. (A.25)
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