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Chapter 3

Development of Solutal Marangoni convection in
V-shaped containers: a model

3.1 Introduction

In chapter 2, microgravity experiments in V-shaped containers were described. In this
chapter, the flow and the concentration distribution in these V-shaped containers are modelled
numerically. The computations are limited to a flat container and to a convex container. The
experiments corresponding to these computations are the experiments with containers 1 and 5
(flat containers) and the containers 2, 4, and 7 (convex containers). Since the experiments with
containers 4, 5 and 7 were most successful, the results obtained for these containers are
referred to when the results of the computations are discussed.

Firstly, the geometry and the equations used in the computations are described. Then the
numerical method is outlined. Finally, the results are presented and discussed for the flat
container as well as the convex container.

3.2 Description of the systems

Calculations on similar systems have been performed in the past [1] by Hoogstraten et al.
In their paper, only the liquid phase was taken into account, and an Alternate Direction Implicit
(A.D.I.) scheme was used to solve the Navier-Stokes equation, the continuity equation, and
the convection-diffusion equation simultaneously. However, due to coupling of the various
equations through the boundary conditions, the numerical scheme was not entirely implicit and
their whole method suffered from the necessity to use very small time steps to obtain a stable
solution. Actually, calculations in their paper were not carried out beyond 1.25 second, which
is too short compared to the experimental time scale. These considerations are discussed in
more detail in section 3.3.

After updating and analysing the routines used by Hoogstraten et al. [1], it was
concluded that a different numerical method had to be used, which could solve the system of
equations simultaneously and implicitly for each time step. Furthermore, after analysing the
first results of this method and the results of the previous method, it was established that the
gas phase had to be taken into account to get an accurate description of the experimental
results. A more detailed discussion of this result is presented in section 3.4.

In the remainder of this chapter, only the system is described that was actually used in the
final computations. This system is two-dimensional, since it was not believed that a third
dimension would provide a completely different picture and it would certainly increase memory
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and time requirements for the computations. The system consists of a liquid phase and a gas
phase, in much the same fashion as used in the experiments. The liquid contains 5 wt %
acetone and the acetone evaporates from the liquid to the gas phase. The Marangoni effect sets
liquid as well as gas in motion. The gas phase is supposed not to be disturbed by any flow
outside the experimental system. Two different containers with respect to geometry have been
used in the computations and they are now described separately.

Flat container

The geometry used for the flat container is sketched in figure 1. The liquid phase is
triangular and contained by two solid walls. At y = HL the liquid-air interface is present. The air
phase is contained by two solid walls inclined at 45 ° and a solid no-slip wall at the top. The
wall at the top is permeable to acetone. A Cartesian x-y co-ordinate system is adopted.
Velocities in x- and y-direction are denoted as u and v respectively.

figure 1 The geometry in case of a flat container. In the experimental case HL = HG

= 0.0141 m.

Firstly, the stream function ψ and the vorticity ω are introduced:
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The equations describing the transport of mass and momentum in this geometry are the
Navier-Stokes equation, the continuity equation and the convection-diffusion equation. The
liquid is assumed to be Newtonian and incompressible and the diffusive mass transport can be
described by the Fick law, because acetone concentrations are low. The governing equation for
stream function, vorticity and concentration c can be written as:
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In these equations, νP and DP are the kinematic viscosity and the solute diffusion
coefficient in the phase P (liquid (L) or gas (G)) under consideration, t is time and ∇2 is the
two-dimensional Laplacian operator.

At the solid boundaries, the following boundary conditions apply:

ψ = 0 (7)

n ⋅ =∇∇ψ 0 (8)

n ⋅ =∇∇c 0 (left and right wall) (9)

c = 0 (permeable top wall) (10)

In these equations, n is the normal vector to the boundary. For the liquid-gas interface,
the following assumptions are supposed to hold:
• There is local thermodynamic equilibrium (equation 12).
• No accumulation of mass takes place at the interface (equation 13).
• The interface behaves Newtonian and the surface viscosity coefficients are negligible

(equation 14).
• The interface does not deform (equation 15).
• There is no slip at the interface (equation 16).

These assumptions result in the following boundary conditions at the liquid-gas interface:

ψ = 0 (11)
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In these equations, the subscript i refers to the interface, and ∇Γ and ∇Γ
2 are the nabla

and the Laplacian operator parallel to the interface. These equations are non-dimensionalised
by scaling distance, time, stream function, vorticity, concentration in the liquid and
concentration in the gas phase by HL, HL

2/νL, νL, νL/HL
2, c0 (initial liquid concentration) and

m⋅c0, respectively.
From now on, concentration (c), stream function (ψ) and vorticity (ω) are dimensionless

quantities. The set of dimensionless equations and boundary conditions now read
(dimensionless equations that are identical to the dimensional equations are not repeated):
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The dimensionless numbers appearing in the equations are the Marangoni number, a Biot
number BiN, the liquid and the gas phase Schmidt numbers, and the viscosity ratio ViP. Note
that the Biot number BiN is not defined as the mass transfer resistance ratio, as it usually is.
Therefore, this Biot number is referred to as the numerical Biot number.
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Convex container

The geometry used for this case is sketched in figure 2. A cylindrical co-ordinate system
is employed. Velocities in r and θ-direction are denoted vr and vθ, respectively. The angle
between the solid walls is an integer multiple of π/4. The integer multiple is denoted by NP.

figure 2 The geometry in case of a convex container. In the experimental case HL ≈
HG  = 0.0141 m and Np = 2 (container 4) or HL = HG = 0.02 m and NP  = 3
(container 7).

For this geometry and these co-ordinates, the dimensionless system of equations takes
the following form:
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Boundary conditions at the solid wall are:

ψ = 0 (32)

n ⋅ =∇∇ψ 0 (33)

n ⋅ =∇∇c 0 (left and right wall) (34)

c = 0 (permeable top wall) (35)

Boundary conditions at the gas liquid interface:
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3.3 Numerical method

The numerical method consists of the following steps. Firstly, a co-ordinate
transformation is applied and the governing equations are rewritten for the new co-ordinates.
The equations are then centrally discretised, which results in a large set of equations. This large
set of equations can not be solved in one step for each time step, since the set is a non-linear
one. Therefore, the set is linearised and solved subsequently with Newton iteration. The
solution for each Newton iteration is obtained with a conjugate gradient-like method. Before
starting the conjugate gradient method, the large set of linearised equations is modified, i.e. the
large sparse matrix is preconditioned.

This section starts with the description of the numerical method up to the linearisation for
both the flat container and the convex container. Then the linearisation and the Newton
iteration are discussed. The numerical method and the model are motivated subsequently.
Finally, the accuracy and convergence of the final computer program is addressed.
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Flat container

From previous numerical experience it was concluded that the use of a triangular
geometry would lead to numerical problems in the upper corners of the triangle. Specifically,
the mass balance would not be observed in this areas, which would lead to numerical loss of
mass. Therefore, it was decided to transform the triangular geometry into a rectangular
geometry.

A co-ordinate transformation from x, y to η, z is made. The transformation is sketched in
figure 3.

figure 3 Transformation from the triangular geometry to a rectangular one.

Furthermore, a transformation from the linear co-ordinate z to the co-ordinate w is made
in order to define a non-equidistant grid in the z-direction. The co-ordinate w has been chosen
to have the same value as z when z equals 0, 1 and zT. The following equations for w are valid:

( )z f w= 0 ≤ z ≤ 1 (42)

( )z g w= 1 ≤ z ≤ zT (43)

( )f w = -a w + (1 + a) w2 (44)

( ) ( )
( )
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z - 1
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T

2

T
T (45)

The parameters a and b were usually chosen to be 0.5 or 0.95. The higher the parameter,
the more refined the grid is close to the interface. Raising a or b increases the accuracy, but
decreases the speed of the calculation. When a or b was chosen too high, unrealistic solutions
were obtained.

The governing and boundary equations for the problem were subsequently transformed
into the new co-ordinate system, i.e. equations for vorticity, stream function and concentration
were written as a function of t, w, and η. An equidistant grid was defined across the η,w area,
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using the labels (0..Nη, 0..NwL) for the liquid phase and (0..Nη, NwL+1..NwL+NwG) for the gas
phase (see figure 4). The grid-sizes are:

∆η =
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N η

∆ ∆w
N

w
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G
T

wG

= =
−
−

1 1

1
                (46)

figure 4 Definition of the equidistant grid used for discretisation.

The grid points are labelled with i, j and n (referring to η, w and t respectively) and for
the field quantities the following notation is adopted: ω i j

n
, , ψ i j

n
, , and c i j

n
, .

In discretising the governing equations (5, 17, 18), the product of stream function and
concentration or vorticity is discretised as:
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The discretised versions of the governing equations are presented in appendix A. The
boundary condition for vorticity at the solid wall is analogous to the first-order-accurate
formula by Thom [2]. For i = 0, liquid phase, the resulting equation reads:
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The discretisation of the boundary condition for concentration at the solid wall and
equation (20) is straightforward. Second order forward or backward formulas are used to
represent the first derivative of concentration with η or w. The boundary condition for liquid
phase vorticity at the interface is obtained by centrally discretising the Marangoni boundary
condition (21). The boundary condition for the gas phase vorticity is obtained by combining
the continuity equation (5) and the no-slip condition (16), resulting in a second-order-accurate
formula analogous to that of Wilkes [2]. This formula and its derivation are presented in
Appendix B.
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When these equations and boundary conditions were used, solutions were obtained with
unequal velocities at both sides of the interfaces. Numerically, the following equation should
hold for j = NwL :
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This boundary condition was, however, not explicitly present in the set of equations.
Therefore, equation (49) was used as an extra boundary condition for ψ for j = NwL+2. The
continuity equation for this row of grid points had to be dismissed, which introduces only a
small error in the mass balance. The approach is justified as the use of the Marangoni boundary
condition instead of the continuity equation also introduces a small error in the continuity. In
both approaches, approximately the same flow patterns were obtained. In this approach, a
small error in the continuity was introduced, while in the other approach the interface is not a
strict no-slip boundary.

Convex container

The same co-ordinate transformation that was used for y in the case of the flat container
was applied for the r co-ordinate in the case of the convex container. The resulting co-ordinate
was also labelled w. A similar grid as used for the flat container was applied for the convex
container. The gridsizes are now:
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The equations were discretised analogous to those for the flat container. The discretised
versions of the governing equations are presented in appendix A. The boundary condition for
the gas phase vorticity at the interface is presented in appendix B. Again, for first derivatives
normal to the boundaries, second-order-accurate forward or backward formulas were used.

Solving procedure

For both the flat and the convex container, a system of Neq difference equations exists,
for each time step, that needs to be solved:
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( )( )N N N Neq wL wG= ⋅ +3 η or   ( )( )N N N Neq wL wG= ⋅ +3 θ

To solve this system, the equations were linearised:

F X F X J X X0 0( ) ( ) ( )≈ + − (52)
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The solving procedure now consists of the following steps.
• To X the values at the old time level n are assigned. This is called X1.
• An iteration parameter k is introduced and the following process is iterated.
• F(Xk) and Jk are evaluated. The following expression is solved:

J X F Xk k k∆∆ = − ( ) (53)

• New values are assigned to Xk+1:

X X Xk k k+ = +1 ∆∆ (54)

• The iteration is stopped when the following criterion is met:
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For ε1 a value of 1 10-10 was chosen.
Equation (53) was solved with a conjugate gradient iterative method, called GMRES.

This method is described in detail by Van der Ploeg [3]. This iteration was stopped when the
two norm of the residual was smaller than ε2. The value of ε2 was chosen to be 1 10-3.
Convergence for the Newton iteration was observed to be faster when a less accurate solution
of the conjugate gradient method was accepted, up to a certain bound. The convergence of the
GMRES solver was accelerated by preconditioning the matrix J. The matrix J was splitted in
the factors L and U and the residual matrix R; J = LU + R. The factors L and U are sparse
and all the elements of the matrix R are in absolute value smaller than a pre-set threshold
parameter, which varies in this case between 10-6 and 10-8. The smaller this threshold
parameter, the longer the construction of the factors L and U and the larger the memory
requirements, but the better the convergence of the GMRES procedure. New factors L and U
were constructed when k > 30 for one time step, or when the number of iterations for each
conjugate gradient iteration exceeded 70. Details of this preconditioning technique are
described by Van der Ploeg [3]. It should be noted that the use of this preconditioning
technique was essential to the solution of equation (53) in terms of speed and convergence.

Initial conditions
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For both cases the following initial conditions apply:

ψ i j,
0 0= ∀ i, j (56)

ω i j,
0 0= ∀ i, j (57)

c i j,
0 1= ∀ i, j ≤ NwL+1 (58)

c i j,
0 0= ∀ i, j > NwL+1 (59)

For the convex container, flow is expected as a result of amplification of disturbances.
Numerically, these disturbances were introduced by introducing the following initial
concentration distribution for the interface:

c X
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Ni j dist
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2
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−

θ

θ

∀ i, j = NwL, NwL+1 (60)

In this equation, the function mod is defined as the Fortran function MOD, and Xdist and
Ndist were usually chosen 0.0001 and 6, respectively. This approach was preferred over other
ways for introducing a numerical disturbance for practical reasons. Other approaches are the
introduction of a randomly disturbed interface concentration or the introduction of a
disturbance with a wavelength that corresponds to the most unstable wavelength found when a
linear stability analysis is carried out [4]. The latter method involves additional work, and does
not guarantee the use of the “right wavelength” encountered in physical reality. A randomly
disturbed interface concentration prevents the direct comparison between various calculations.
Various values for Xdist and Ndist were used, and it was found that the same macroscopic
convective patterns evolved after some initial time (see section 3.5).

The large initial concentration gradients imposed by these boundary conditions introduce
numerical problems at the interface for short times. Therefore, slightly different initial
conditions were used. Using equations (56-60) for a specific set of parameters Ma, ScL, ScG,
BiN, ViG, µG, µL, a calculation was performed for 500 time steps, setting Ma = 0, each time
step being 1 10-5. The resulting concentration distribution was used as the initial concentration
distribution for the remainder of the calculation (with Ma ≠ 0). In this way, the concentration
distribution was somewhat smoothed, and numerical problems due to large initial gradients
were avoided.

Motivation of the model and the numerical method

The model used by Hoogstraten et al. [1] was similar to the model described above.
However, as in many other models describing the development of Marangoni flows in gas-
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liquid systems [e.g. 5, 6], the gas phase was only taken into account by introducing the
following boundary condition at the interface:

∂
∂

c

y
Bi cR= (61)
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m D H
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G L
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L
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R DR
L

G L
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In these equations, k is a mass transfer coefficient and RG is the mass transfer resistance
of the gas phase. This approach has the following shortcomings:
1. The Biot number BiR is a place and time-dependent parameter. This is taken care of

automatically when the gas phase is taken into account. In the single phase approach,
however, an estimation for this Biot number as a function of time and place has to be
made (see [5, 7]). Often, nevertheless, this Biot number is assumed to be fixed [1]. The
shortcoming of the use of the empirical Biot number in thermocapillary convection
problems was already recognised by Simanovskii and Nepomnyashchy [8].

2. Diffusion parallel to the interface through the gas phase is ignored. This could lead to
significant errors, as the diffusion coefficient in the gas phase is usually four orders of
magnitude larger than the diffusion coefficient in the liquid phase. The larger diffusion
coefficient in the gas phase leads to faster concentration equilibration parallel to the
interface, and disturbances in the concentration field parallel to the interface penetrate
much further, which leads to different roll cell sizes.

3. Convection in the gas phase also contributes to pattern selection and mass transfer. Since
the diffusivity is in the order of 10-5 m2/s, convection is only relevant in the 1 cm
geometry when velocities start to exceed 1 mm/s. This is the case for the microgravity
experiments, but it does not apply for most studies. Usually, only slightly supercritical
Marangoni numbers are used, which implies relatively low velocities.
Furthermore, according to the Sternling-Scriven criteria, the system used in these
calculations falls into the stationary unstable, diffusion controlled, regime [9]. Neglecting
the convection in the gas phase has less influence than neglecting the diffusive
contribution of the gas phase. However, for some cases convection in the gas phase can
not be ignored. An example of such a case concerns the situation in which acetone
absorbs in the water phase instead of desorbing from it (reversed mass transfer, see
chapter 2). In that case, the system is in the oscillatory unstable, convection controlled
regime.

Some calculations have been performed on a one phase system as described by
Hoogstraten et al. [1], using the numerical method presented in this chapter. For the flat
container, very small roll cells were initially found in the corners. Since the concentration
distribution in the middle of the container is not disturbed by the concentration sink in the
corners due to the low liquid phase diffusivity, these roll cells did not extend over the entire
container. The small roll cells initiated large, counter rotating roll cells in the middle of the
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container, which turn the opposite way as was found experimentally. Furthermore, the
combination of high velocities and low diffusivities at the interface was found to introduce
numerical problems (wiggles etc.) at the interface for lower Marangoni numbers than those
that caused numerical problems in the two phase model. The one phase model was therefore
dismissed.

Regarding the choice of the numerical method, a few words need to be said. As described
in the introduction of section 3.2, an A.D.I. method was first employed that was not
completely implicit. Very small time steps were required as the numerical system was unstable,
and only relatively small Marangoni numbers were possible. Especially, the Thom boundary
condition for vorticity (equation 48) was very sensitive to this instability. The present method
circumvents this problem as the whole system of equations is solved simultaneously. Boundary
conditions and governing equations linking the field quantities concentration, vorticity and
stream function can be incorporated without resorting to the use of values of these quantities at
the previous time level. The use of the preconditioning technique, developed by the
Mathematical Institute of the University of Groningen, proves to be invaluable to the solution
of the matrix equation (53). This method is therefore expected to be valuable in other
problems, in which the field quantities are linked in the system equations, as in, for example,
(double-diffusive) Rayleigh-Marangoni problems and Soret problems. Other numerical
techniques, as for example the one referred to in a paper on solutal Marangoni convection in a
system with two melt phases by Yasuhiro et al. [10], might however also yield satisfactory
results.

Accuracy and convergence

Convergence of the computer program was checked for a few model situations and the
method was found to be first-order in time and second-order in both spatial co-ordinates. The
accuracy was checked by solving a few problems with different time steps, grid sizes and
values of a and b. Solutions for interface quantities, such as interface velocities and
concentrations, proved to be almost exactly the same for the case a = 0.508 ; NwL = 60 and the
case a = 0 ; NwL =120. From equation (44) this is also expected, as the grid size near the
interface is the same in both cases.

In figure 5, solutions for ScL = 791; ScG = 1.48; Ma = 105; BiN = 13.1; ViG = 15.38; µG/µL

= 1.826 10-2; NwL = 60; NwG = 31; Nη = 60; HL = HG; a = b = 0.5 are compared for ∆t = 5 10-3

and number of time steps Nt = 400 (figure 5a,b) and ∆t = 5 10-4 and Nt = 4000 (figure 5c,d).
Almost the same solutions are obtained.
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figure 5 Comparison for different time steps. See text for parameter values. a.
Isoconcentration plot for ∆t = 5 10-3 ; Nt = 400; ∆C = 0.02; Cmax = 0.99; b.
Contourplot for same case; ∆S = 0.01; c. Isoconcentration plot for ∆t = 5
10-4 ; Nt = 4000; ∆C = 0.02; Cmax = 0.99; d. Contourplot for same case; ∆S

= 0.01. See text on next page for explanation regarding the presentation of
these results.



Marangoni convection in V-shaped containers: numerical model 103

figure 6 Comparison for different grids. See text for parameter values. a.
Isoconcentration plot for Nη = 60; NwL = 60; NwG = 31; ∆t = 5 10-3; Nt =
400; a = b = 0.5; ∆C = 0.02; Cmax = 0.99; b. Contourplot for same case; ∆S

= 0.1; c. Isoconcentration plot for Nη = 150; NwL = 90; NwG = 31, ∆t = 5
10-4; Nt = 4000; a = b = 0.5; ∆C = 0.02; Cmax = 0.99; d. Contourplot for
same case; ∆S = 0.1; e. Isoconcentration plot for Nη = 60; NwL = 60; NwG =
31, ∆t = 1 10-3; Nt = 2000; a = b = 0.95; ∆C = 0.02; Cmax = 0.99; f.
Contourplot for same case; ∆S = 0.1

For the presentation of the results (contour plots), the following convention is adopted.
In the stream function plots, dotted lines indicate negative stream function values, and
continuous lines indicate positive stream function values. Negative values indicate an anti-
clockwise turning roll cell, positive values a clockwise turning roll cell. In the caption to the
figure, the increase in value between each streamline is indicated by the quantity ∆S

(dimensionless). Contour lines for zero stream function are omitted. In the concentration plots,
the maximum contour line is indicated with a thick black line. Dotted lines point to a (local)
minimum value of concentration. The increase in value between each iso-concentration line is
indicated in the caption by the quantity ∆C (dimensionless). The value corresponding to the
maximal concentration contour line is indicated by the quantity Cmax (dimensionless). Note that
for the stream function plots, both the liquid and the gas phase are presented, while for the
concentration plots, only the liquid phase is presented.
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In figure 6, results are presented for the physical parameters described above, but Ma =
106. In one case, Nη = 60, NwL = 60, NwG = 31, ∆t = 5 10-3, Nt = 400, a = b = 0.5 (figure 6a, b),
for another case Nη = 150, NwL = 90, NwG = 31, ∆t = 5 10-4, Nt = 4000, a = b = 0.5 (figure 6c,
d), and for a third case Nη = 60, NwL = 60, NwG = 31, ∆t = 1 10-3, Nt = 2000, a = b = 0.95
(figure 6e, f). In figure 7, the evolution of the maximum interface velocity with time is depicted
for these three cases. From these results it can be seen that the results are dependent on the
grid, especially on the refinement of the grid, but that qualitatively the same results are
obtained. For higher values of a and b, the situation near the interface is described more
accurately, which leads to steeper concentration gradients and higher velocities. The total mass
of acetone in the container, obtained by integrating the concentration over the total liquid
volume, decreases less fast for more accurate grids, again as a result of the more accurate
representation of physical reality near the interface. Similar results were obtained for the
convex container. Convergence takes longer for higher a and b, and therefore not all the
calculations have been done with these higher values of a and b.

figure 7 Comparison for different grids. Maximum interface velocity as a function of
time for HL = HG = 0.01 cm. Same cases as described for figure 6.
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3.4 Results for flat container

In the remainder of this chapter, the following physical properties and the resulting
dimensionless numbers are used: DL = 1.27 10-9 m2/s [11], DG = 1.04 10-5 m2/s [11], µL =
1.002 10-3 Pa s [12], µG = 1.83 10-5 Pa s [12], νL = 1.004 10-6 m2/s [12], νG = 1.5443 10-5 m2/s
[12], HL = 0.0141 m, HG = 0.0141 m, m = 1.60 10-3 [kg/m3 m3/kg] [13], BiN = 13.1, ScL = 791,
ScG = 1.48 and ViG = 15.38. The Marangoni number is varied. It should be kept in mind that
the real Marangoni number for the experimental system, given (dγ/dc) = -1.6 10-4 m3/s2 [14]
and c0 ≈ 50 kg/m3 (see chapter 2), is approximately 8.9 107. Note that the dependence of
surface tension on concentration depends strongly on the absolute concentration, whereby this
dependence is larger for lower concentrations. The parameter ε (figure 3) is set to 0.05.

Calculations were performed on the Cray-J90 of the Faculty of Mathematics and Science
of the University of Groningen and on three different HP machines of the Department of
Chemistry of the University of Groningen.

Different Marangoni numbers

For the parameters described above, various runs were carried out in which the
Marangoni number was steadily increased. Calculations were performed up to Ma = 2 107.
Runs were performed for various values of a, b, Ma, ∆t and Nt. The runs described here were
all performed on a grid with Nη = 60, NwL = 60, NwG = 31. The runs presented in this chapter
are summarised in table 1.

Table 1. Parameter values for runs with flat container.

Ma a b ∆t Nt

Case 1 1 103 0.95 0.95 5 10-3 400

Case 2 1 104 0.95 0.95 5 10-3 400

Case 3 1 105 0.95 0.95 5 10-3 400

Case 4 1 106 0.95 0.95 1 10-3 2000

Case 5 1 105 0.5 0.5 2 10-4 5000

Case 6 1 106 0.5 0.5 2 10-5 50000

Case 7 5 106 0.5 0.5 2 10-5 50000

Case 8 1 107 0.5 0.5 2 10-5 50000

Case 9 2 107 0.5 0.5 2 10-5 45000

Runs for higher values of the Marangoni number have been tried, but extremely small
time steps were necessary to achieve convergence. A larger grid could have been a solution to
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this problem, but the combination of small time steps and large grids would require extremely
long calculation times. From the runs that have been tried, it was found that interface velocities
in the order of several cm/s or even dm/s were found (after a few seconds real time) for Ma
numbers approaching 108. This clearly did not correspond to the experimentally found
maximum interface velocity of roughly 0.6 cm/s for a flat container in microgravity (container
5, see chapter 2).

It should be kept in mind that all dimensional values, which are presented along with the
results, are valid for HL = HG = 0.0141 m, but that the results apply also for any other value of
HL (with equal HG). The times mentioned in the captions to the figures should then be
multiplied with ( H L

2 20 0141/ . ) and velocities multiplied by (0.0141 / HL).
Results for a = b = 0.95 are presented in figures 8-11. Results for a = b = 0.5 are

presented in figures 12-16. In figure 17, maximum interface velocities are presented as a
function of time for all the different cases. The calculation time for case 9 was approximately 2
106 CPU seconds on the Cray-J90. Results are discussed in section 3.6.

figure 8 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m. Case 1 (Ma = 103) after 400 seconds.
Cmax = 0.99; ∆C = 0.04; ∆S  = 0.0002

figure 9 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m. Case 2 (Ma = 104) after 400 seconds.
Cmax = 0.99; ∆C = 0.04; ∆S  = 0.002
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figure 10 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 3 (Ma = 105). For all iso-
concentration plots Cmax = 0.99; ∆C = 0.02. a. After 80 seconds; ∆S  = 0.01;
b. After 160 seconds; ∆S  = 0.02; c. After 400 seconds; ∆S  = 0.01

figure 11 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 4 (Ma = 106). For all iso-
concentration plots Cmax = 0.99. a. After 80 seconds ∆C = 0.01; ∆S  = 0.04.
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figure 11 b. After 160 seconds ∆C = 0.01; ∆S  = 0.1; c. After 240 seconds ∆C = 0.01;
∆S  = 0.1; d. After 320 seconds ∆C = 0.02; ∆S  = 0.1; e. After 400 seconds
∆C = 0.02; ∆S  = 0.1.

figure 12 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m. Case 5 (Ma = 105) after 200 seconds.
Cmax = 0.99; ∆C = 0.04; ∆S  = 0.01
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figure 13 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 6 (Ma = 106). For all plots Cmax =
0.99; ∆C = 0.02; ∆S  = 0.1. a. After 80 seconds; b. After 160 seconds

figure 14 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 7 (Ma = 5 106). For all plots Cmax =
0.99; ∆C = 0.01; ∆S  = 0.4. a. After 80 seconds; b. After 160 seconds
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figure 15 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 8 (Ma = 107). For all plots Cmax =
0.99; ∆C = 0.01; ∆S  = 0.4. a. After 80 seconds; b. After 160 seconds.

figure 16 Evolution of concentration field (left) and flowpattern (right) for the flat
container, HL = HG = 0.0141 m, case 9 (Ma = 2 107). For all plots Cmax =
0.99; ∆C = 0.01; ∆S  = 0.4. a. After 20 seconds; b. After 40 seconds.
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figure 16 c. After 60 seconds; d. After 80 seconds; e. After 100 seconds; f. After 120
seconds; g. After 140 seconds.
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figure 16 h. After 160 seconds; i. After 180 seconds

figure 17 Maximum interface velocities as a function of time for the different cases
(flat container). Each legend number corresponds to its respective case.

3.5 Results for convex container
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In this section, predominantly the results are presented for a container making up one
quarter of a cylinder with the parameters HL = HG = 0.0141 m and Np = 2. This container is
quite similar to the container 4 described in chapter 2 (see page 38).

Different numerical disturbances

To investigate the influence of the nature of the numerical disturbances on the evolution
of the Marangoni flow in the convex containers, six different runs have been performed with
different values for the parameters Xdist and Ndist introduced in equation (60). The parameter
values are listed in table 2.

Table 2. Parameter values for runs with different initial conditions for the convex
container (a = b = 0.5; ∆t = 5 10-4; Nθ = 60, Nt = 4000):

Ma Ndist Xdist

Case ri1 107 6 0.0001

Case ri2 107 5 0.0001

Case ri3 107 6 0.001

Case ri4 107 6 0.01

Case ri5 107 12 0.0001

Case ri6 107 6 -0.0001

From the results, it can be concluded that in each of the cases described above, a final
(after 400 seconds) two roll cell pattern evolves in which the liquid flows along the interface
from the middle of the container to the sides. In case ri2 and ri6, the initial boundary conditions
impose roll cells which turn exactly the other way around. However, after 40 seconds, in all the
cases, only roll cell patterns with roll cells of the former type survive (see also chapter 2). The
patterns consist of four to eight roll cells in the liquid. After 80 seconds, all but one of the
patterns (case ri4: 4 roll cells) develop into a two roll cell pattern. These observations lead to
the contention that the initial conditions do have an influence on the shape of the intermediate
convective patterns, but that all different initial conditions eventually lead to the same kind of
two roll cell pattern. Calculated velocities are of the same order of magnitude, which is
demonstrated in figure 18. In figure 19, the concentration distributions after 400 seconds are
shown for all the different cases.
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figure 18 Maximum velocities at the interface as a function of time for different initial
conditions.

figure 19 Concentration field for different initial conditions after 400 seconds. For all
plots Cmax = 0.99; ∆C = 0.02. a. Case ri1; b. Case ri2; c. Case ri3; d. Case
ri4



Marangoni convection in V-shaped containers: numerical model 115

figure 19 e. Case ri5; f. Case ri6

Different Marangoni numbers

Various runs with different Marangoni numbers were performed for the convex
container. In each of these calculations a = b = 0.5 and NwG = 31. Other parameter values are
listed in section 3.4 and table 3. The results are discussed in section 3.6.

Table 3. Parameter values for runs with convex container.

Ma Nθ NwL ∆t Nt

Case r1 1 104 60 60 5 10-4 4000

Case r2 1 105 60 60 5 10-4 4000

Case r3 1 106 60 60 5 10-4 4000

Case r4 1 107 60 60 5 10-4 4000

Case r5 5 107 150 90 5 10-5 4000

For the smaller grid, it was almost impossible to raise the Marangoni number further. For
the larger grid (case r5), a higher Marangoni number was possible. However, for this run that
covered only 40 real time seconds, 1.9 106 CPU seconds on the Cray J90 were necessary.

Flow patterns and concentration distributions are depicted in the figures 20-24. The
corresponding maximum interface velocities are depicted in figure 25.
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figure 20 Evolution of concentration field (left) and flowpattern (right) for the convex
container, HL = HG = 0.0141 m. Case r1 (Ma = 104) after 400 seconds.
Cmax = 0.99; ∆C = 0.04; ∆S  = 1 10-10

figure 21 Evolution of concentration field (left) and flowpattern (right) for the convex
container, HL = HG = 0.0141 m, case r2 (Ma = 1 105). For all plots Cmax =
0.99; ∆C = 0.04; a. After 80 seconds; ∆S  = 1 10-4; b. After 200 seconds; ∆S

= 0.04
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figure 21 c. After 400 seconds; ∆S  = 0.01

figure 22 Evolution of concentration field (left) and flowpattern (right) for the convex
container, HL = HG = 0.0141 m, case r3 (Ma = 1 106). For all plots Cmax =
0.99; ∆C = 0.02; a. After 80 seconds; ∆S  = 0.04; b. After 240 seconds; ∆S

= 0.2; c. After 400 seconds; ∆S  = 0.1
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figure 23 Evolution of concentration field (left) and flowpattern (right) for the convex
container, HL = HG = 0.0141 m, case r4 (Ma = 1 107). For all plots Cmax =
0.99; ∆C = 0.02; ∆S  = 0.2; a. After 4 seconds; b. After 40 seconds; c. After
80 seconds; d. After 120 seconds
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figure 23 e. After 200 seconds; f. After 280 seconds; g. After 400 seconds

figure 24 Evolution of concentration field (left) and flowpattern (right) for the convex
container, HL = HG = 0.0141 m, case r5 (Ma = 5 107). For all plots Cmax =
0.99; ∆C = 0.01; a. After 12 seconds; ∆S  = 0.2.
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figure 24 b. After 24 seconds; ∆S  = 0.4; c. After 40 seconds; ∆S  = 0.4

figure 25 Maximum interface velocities in the convex container as a function of time.

Container 7



Marangoni convection in V-shaped containers: numerical model 121

One run was performed for the container 7, described in chapter 2. For this container, NP

= 3 and HL = HG = 0.02 m. For this run, Ma = 2 107, Nθ = 90 and all other parameters equal to
those described above. In figure 26, the evolution of the stream pattern and the concentration
field are depicted for each 20 seconds.

figure 26 Evolution of concentration field (left) and flowpattern (right) for the case
NP  = 3, HL = HG = 0.02 m. For all iso concentration plots ∆C = 0.01;
Cmax = 0.99 a. After 20 seconds; ∆S  = 0.2; b. After 40 seconds; ∆S  = 0.4;
c. After 60 seconds; ∆S  = 0.2; d. After 80 seconds; ∆S  = 0.2
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figure 26 e. After 100 seconds ∆S  = 0.4; f. After 120 seconds; ∆S = 0.2; g. After 140
seconds; ∆S = 0.2; h. After 160 seconds; ∆S = 0.4; i. After 180 seconds; ∆S

= 0.4
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figure 26 j. After 200 seconds; ∆S = 0.4

3.6 Discussion

The discussion of the results is focused on the comparison between the numerical and the
experimental results. Furthermore, the influence of the Marangoni number on the numerical
findings is contemplated, as well as the numerical peculiarities of the model.

Flat container

The numerical results indicate that the use of the experimental Marangoni number in the
model leads to too high interface velocities and numerical problems. From figure 17, one can
conclude that the results are quite sensitive to the values of a and b as well. The experimentally
found maximum interface velocity for container 5 was in the order of 0.5 cm/s, which
corresponds roughly to case 8, but case 4, 7 and 9 are close as well. When the concentration
and flow patterns of these cases are studied, the following trend emerges.

Initially, a four roll cell pattern in the liquid evolves, which transforms into the two roll
cell pattern which is experimentally observed. The higher the Marangoni number in the
calculations, the shorter lasting the four roll cell period is. Although the flow pattern
sometimes exhibits more than two roll cells after the transition to a two roll cell pattern, the
base pattern consists of only two roll cells, which can be distinguished clearly from the
concentration map. This qualitative picture corresponds quite well with the experiments, albeit
that four roll cells have only been observed occasionally for a very short time, and not in the
microgravity case. Furthermore, the numerically found concentration patterns show quite large
gradients as a result of these four roll cells, and these have never been seen experimentally. The
experimental concentration maps are much smoother during the entire experimental time.

Nevertheless, the overall numerical picture corresponds quite well to the experiments.
There are a few reasons for the discussed discrepancy between the model and the experiments:
• The model represents a two-dimensional container without the sidewalls present in the

three-dimensional experimental container. This renders the experimental velocities lower
than the numerical ones. The three dimensional flow probably also helped to smooth out
the concentration gradients.

• In the experiment, pollution was present in small quantities in the corners. The resulting
concentration gradients have contributed to the formation of a two roll cell pattern (see
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also chapter 2), but have also retarded the convection. Other dissimilarities between the
perfect mathematical model and the experimental reality may also have played a role,
such as a non-zero acetone concentration in the gas phase, non-uniform temperatures and
meniscus effects.

• In the model, the interface is considered to be Newtonian and no surface excess
quantities are taken into account. In reality, small traces of pollution easily retard
interfacial movement by the Plateau-Marangoni-Gibbs effect. As long as not too much
pollution is present, the omission of interfacial dilatational and shear viscosities is
probably justified [15]. The exclusion of Gibbs absorption (of acetone) also introduces an
error, both in the impulse as in the mass balance, as was demonstrated by Brian and Ross
[16].
All these omissions result in a too high velocity.

• Especially for higher Marangoni numbers, the model suffers from a lack of numerical
accuracy that can only be compensated for by larger grids (setting a and b larger than
0.95 does not further increase accuracy substantially). Problems occur especially at the
interface, where everything ‘happens’. Larger grids, however, increase memory and CPU
requirements drastically.
Due to an inaccurate description of the mass transfer at the interface, concentration
gradients may be too high or too low at the interface, even at low Marangoni numbers.
Although wiggles have not been observed, other numerical disturbances are sometimes
seen in the concentration maps (see figure 16) as a result of the high velocities. These
disturbances can have influence on the roll cell pattern.

The model will be impossible to handle when all these omissions are included.
Furthermore, the physical constants that govern for example the Plateau-Marangoni-Gibbs
effect are largely unknown.

Convex container

When figures 15 of chapter 2 and figure 23 of this chapter (case r4) are compared, an
accurate match is observed. In figure 23a, microconvection consisting of 16 roll cells is
depicted. It should be kept in mind that this microconvective patterns is the result of an initial
condition of six roll cells. In figure 23b these small roll cells have partly merged and from the
concentration map a basic four roll cell pattern can be recognised. Then the two roll cell
pattern emerges in figure 23c and remains stable for the remainder of the calculation time.
Figures 23b, 23c and 23f compare very well to figures 15a, 15b and 15d of chapter 2,
respectively. Quantitatively, the numerically calculated concentration gradients are a little bit
larger than the experimentally found gradients. Also, the model results for container 7 are in
quite good agreement with the experiments. In this case, figures 26c, 26f and 26i can be
compared to figures 19b, 19c and 19d of chapter 2, respectively. Note that the experimental
and numerical time to transit from the four roll cell to the two roll cell configuration are



Marangoni convection in V-shaped containers: numerical model 125

approximately the same, 180 seconds. In the case of container 4 the experimental time is
slightly shorter than the numerical one.

Influence of the Marangoni number

If the Marangoni number is increased for the flat container, the maximum interface
velocity initially increases slightly more than proportionally. For higher Marangoni numbers,
the increase becomes less than proportional (figure 17). For low Marangoni numbers, the flow
only adjusts the concentration field marginally and the concentration gradient parallel to the
interface is slightly increased with respect to the situation without flow. This slight increase in
the concentration gradient can be observed when figures 8 and 9 are compared. For higher
Marangoni numbers, the Marangoni effect progressively destroys the concentration gradient
parallel to the interface.

For convex containers, the dependence of the maximum velocity on the Marangoni effect
is slightly different (figure 25). For low Marangoni numbers (case r1), the numerical
disturbance is not amplified and the flow is virtually non-existent. In the case of a flat
container, the concentration gradient necessary for the Marangoni flow is provided for
macroscopically. For Ma = 104, in the flat case, velocities are of the order 10-5 m/s while for
the convex container the velocity is of the order 10-12 m/s. When Ma is raised to 105, the
numerical disturbance is amplified exponentially in time, which is clear from figure 25, case r2.
(The exponential growth of the disturbance indicates that linear stability theory is applicable for
these cases.) Clearly, besides the necessity of knowing the critical Marangoni number,
knowledge about a critical time which is dependent on the Marangoni number is indispensable
when the influence of the Marangoni effect on mass transfer needs to be described. For the
Marangoni numbers employed in the microgravity experiments, this critical time is negligible
small. For larger Marangoni numbers and times larger than the critical time, the dependence of
the maximum interface velocity on Ma for convex containers is analogous to the dependence
for the flat containers.

In some figures, it can be seen that a transition from a symmetrical concentration and
flow pattern occurs to a chaotic pattern for larger Marangoni number and larger time. For Ma
= 106, this transition can be nicely observed in figures 13 and 22. That is, for Marangoni
numbers sufficiently large, the problem becomes sufficiently non-linear to make the solution of
the problem asymmetrical.
Numerical peculiarities

The concentration maps depicted in some of the figures feature some disturbances, which
can be assumed to be numerical. These disturbances have also influenced the flow pattern as
they have triggered small roll cells disturbing the general flow pattern. In a sense, these
numerical disturbances may simulate actual physical disturbances that are hard to model. The
general numerical picture resembles the experimental picture quite well, so that it can be
assumed that these numerical disturbances are no serious flaws in the model up to a certain
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limit. For too high Marangoni numbers, too much of these physically unrealistic situations
occur and moreover, at a certain point the numerical routine may fail to converge.

3.7 Conclusions

The model defined in this chapter represents the microgravity experiments quite well. The
similarity is a little better for the convex container than for the flat container as the four roll cell
pattern evident in the numerical simulations is hardly present in the experiments. The
Marangoni number used for the simulations needs to be smaller than the experimental
Marangoni number to get a good representation of the experiments. Some causes for the
discrepancy between the model and the experiments have been proposed. The absence of the
Plateau-Marangoni-Gibbs effect in the model is one of the most important ones.

The flat and convex containers have similar flow development. After a transition through
a state with multiple roll cells (depending on the initial conditions and the container type), a
four roll cell pattern evolves followed by a stable two roll cell pattern. A pattern with flow
directed from the interface into the liquid along the solid side walls is selected preferentially.

The results of this work demonstrate that a representative part of the gas phase should be
included in the model in order to obtain satisfactory results.

The numerical routine employed for this study renders much better results than routines
employed in the past, which is mainly due to its complete implicity and the use of a
preconditioning technique.

List of symbols

a grid refinement parameter introduced in equation (44) [-]
b grid refinement parameter introduced in equation (45) [-]
BiN Biot number defined by equation (Fout! Bladwijzer niet gedefinieerd.) [-]
BiR Biot number defined by equation (62) [-]
c concentration [kg m-3] or [-]
Cmax maximum concentration contour line (used in figures) [-]
D diffusion coefficient [m2 s-1]
HG size of gas phase (see figure 1 and 2) [m]
HL size of liquid phase (see figure 1 and 2) [m]
m distribution coefficient (equation (12)) [kg m-3 kg-1 m3]
Ma Marangoni number [-]
Ndist parameter defined by equation (60) [-]
NP integer, denoting size of convex container (figure 2) [-]
Nt number of time steps [-]
NwG number of grid points in w-direction (gas phase) [-]
NwL number of grid points in w-direction (liquid phase) [-]
Nη number of grid points in η-direction [-]
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Nθ number of grid points in θ-direction [-]
r radial co-ordinate [m] or [-]
RG gas phase mass transfer resistance (equation (62)) [-]
Sc Schmidt number defined by equation (24) [-]
t time [s] or [-]
u horizontal velocity [m s-1] or [-]
v vertical velocity [m s-1] or [-]
Vi viscosity ratio defined by equation (25) [-]
x length co-ordinate [m] or [-]
Xdist parameter defined by equation (60) [-]
y length co-ordinate [m] or [-]
w length co-ordinate defined by equations (42) and (43) [-]
z length co-ordinate defined by figure 3 [-]
zT parameter defined by figure 3 [-]
γ surface tension [N m-1]
∆C distance between concentration contour lines (figures) [-]
∆S distance between stream function contour lines (figures) [-]
ε parameter defined by figure 3 [-]
η co-ordinate defined by figure 3 [-]
θ angular co-ordinate [rad]
µ dynamic viscosity [Pa s]
ν kinematic viscosity [m2 s-1]
ψ stream function [m2 s-1] or [-]
ω vorticity [s-1] or [-]

Subscripts

G gas phase
i interface
L liquid phase
P phase (gas or liquid)
ΓΓ parallel to the interface
0 initial
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Appendix A

In this appendix, the discretised versions of the governing equations are presented.

Flat container

The Navier Stokes equation:
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In the next equations f is either f or g, depending on the phase P.
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The continuity equation:
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The convection-diffusion equation:
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Convex container

Navier-Stokes equation:

( ) ( )
( )

( ) ( )
( )

ω
ψ ψ ψ ψ

ω
ψ ψ ψ ψ

i j
n j i j

n
i j
n

P

j i j
n

i j
n

P

P j

P

P j

P

i j
n j i j

n
i j
n

P

j i j
n

i j
n

P

P j

w w

Vi

w

Vi

w

w w

Vi

,

, , , ,

,

, , , ,

+
+ + +

+
− +
+

+ + − +

−
+ − +

+
− −
+

− + − −

− −
+

− −
− −












+

− −
+

− −
−

1
1 1 1

1
1 1
1

1 1 1 1

2

1
1 1 1

1
1 1
1

1 1 1 1

1

16

1

16

3

2

4

4

1

16

1

16

2

2

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆

Ω

∆

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆θ

( ) ( )
( )

( ) ( )
( )

2

1
1 1 1

1
1 1
1

1 1 1 1

2

1
1 1 1

1
1 1
1

1 1 1 1

2

1

16

1

16

2

2

1

16

1

16

3

2












+

−
+

−
−












+

−
+

−
− +

+
+ + +

+
+ −
+

+ + + −

−
+ + −

+
− −
+

+ − − −

ω
ψ ψ ψ ψ

ω
ψ ψ ψ ψ

i j
n j i j

n
i j
n

P

j i j
n

i j
n

P

P j

i j
n j i j

n
i j
n

P

j i j
n

i j
n

P

P j

P

w w

Vi

w w

Vi

w

,

, , , ,

,

, , , ,

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆θ

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆

( ) ( )
( )

( ) ( )

Vi

w

t

Vi Vi

w w

w w

P j

P

i j
n P j P j

P

i j
n j i j

n
i j
n

P

i j
n j i j

n
i j
n

P
i j
n j i j

n
i j
n

Ω

∆

∆

Ω

∆θ

Ω

∆

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆

4

4

1 2 3 1

16

1

16

1

16

1
2 2 1 1

1 1 1

1 1
1 1 1

1 1
1 1 1












+

+ +











+

−










+

−










+

−

+
− +
+ + −

+ +
+ + +

− −
+ − −

ω ψ
ω ω

ψ
ω ω

ψ
ω ω

, ,

, ,

,

, ,

,

, ,

P ∆θ












+

( ) ( )
( )

( )
( ) ( )

ψ
ω ω

ω
ψ ψ

ω
ψ ψ

ω

i j
n j i j

n
i j
n

P
i j
n j i j

n
i j
n

P

P j

P

P j

P

i j
n j i j

n
i j
n

P

P j
i j
n P j

w w

Vi

w

Vi

w

w

Vi

t

Vi

+ −
+ − +

+
+ + − +

−
− + − −

−










=

−
+ +












+

−
+












+ −

1 1
1 1 1

1

1 1 1 1

2

1

1 1 1 1

2

1

16

1

16

3

2

4

4

1

16

2

2

1 2

,

, ,

,

, ,

,

, ,

,

Ω

∆ ∆θ

Ω

∆ ∆θ

Ω

∆

Ω

∆

Ω

∆ ∆θ
Ω

∆θ ∆
Ω

∆θ ( )

( )
( )

2 2

1

1 1 1 1

2

4

1

16

2

2

−











+

− −
+












++

+ + + −

Vi

w

w

Vi

P j

P

i j
n j i j

n
i j
n

P

P j

Ω

∆

Ω

∆ ∆θ

Ω

∆θ
ω

ψ ψ
,

, ,

( )
( )

ω
ψ ψ

i j
n j i j

n
i j
n

P

P j

P

P j

Pw

Vi

w

Vi

w,

, ,

−

+ − − −− −
+ −












1

1 1 1 1

2

1

16

3

2

4

4

Ω

∆ ∆θ

Ω

∆

Ω

∆
(A.10)

In the next equations f is either f or g, depending on the phase P.
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The continuity equation:
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The convection-diffusion equation:
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Appendix B

In this appendix, the derivation of the difference formulas for the gas phase vorticity at
the interface (ω i NwL

n
, +
+

1
1 ) is presented.

Flat container

To obtain the required formula for the gas phase vorticity at the interface, the continuity
equation (5) has to be combined with the no-slip condition (16). From appendix A, the
continuity equation for the liquid phase and the gas phase vorticity are obtained:
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The no-slip condition is expressed by the following equation:
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The second derivative of ψ with w in the liquid phase is represented by the next formula,
which is derived from Taylor expansion of ψ(η, 1-∆wL) and ψ(η, 1-2∆wL):
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When a similar formula for the gas phase is used and substituted in the continuity
equation, the following expressions for interface vorticity are obtained:
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It is possible to eliminate h(0) with a linear combination of the final equations for
vorticity in the liquid and the gas phase. For the mixed derivative h’(0), a second order
approximation is used, which results in (j = NwL+1):
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The final formula for the gas phase vorticity at the interface then reads:

i = 1,.., Nη-1; j = NwL+1
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In this equation, XL and XG are:
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Convex container

After an analogous derivation, the following formula for the gas phase vorticity is
obtained:

i = 1,.., Nθ-1; j = NwL+1
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In this equation, XL and XG are:

( )( )
( )

( ) ( )
X

w f

f

f
L

L

= +
−

−
−

1
3

1 1

1

1 1
2∆ '

' '

'ε ε
(B.13)

( )( )
( )

( ) ( )
X

w g

g

g
G

G

= − +
−

+
−

1
3

1 1

1

1 1 2∆ '

' '

'ε ε
(B.14)


