Chapter 1

Introduction

1.1 Liquid Dynamics in Spacecraft

Since the launch of the first satellite Sputnik on October 4, 1957, a lot of satellites have
been launched for scientific or commercial reasons. Nowadays, satellites carry relatively
more fuel (necessary for course corrections) than in the beginning of the space era. This
has consequences for the controllability of satellites. Indeed, when thrusters are fired for
course correction, the onboard fuel starts to accelerate inducing a force and torque on
the satellite, whence the satellite starts to accelerate, and so forth.

This interaction between the motion of the satellite and the onboard sloshing liquid
can have undesirable consequences as happened quite recently (in 1998) with NASA’s
Near Earth Asteroid Rendezvous (NEAR) craft, which was on its way to the asteroid 433
Eros [38, 93] (see figure 1.1). A propellant burn that would put the spacecraft on track
was aborted after sensors detected accelerations that exceeded limits programmed into
its onboard computer. Further investigation revealed that the spacecraft was tumbling,
which eventually caused a 13 months delay in the mission.

Figure 1.1: Left: Mock-up of the Near Earth Asteroid Rendezvous (NEAR) space-
craft. Right: Picture of asteroid 433 Eros taken by the NEAR spacecraft. These pic-
tures were taken from http://www.space.com/php/multimedia/imagegallery/archive.php
and http://antwrp.gsfe.nasa.gov/apod/ap010211.html respectively.
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Controllability of spacecraft plays also an important role in the operation of the
International Space Station (ISS). When the Space Transportation System (STS), better
known as the Space Shuttle, docks the ISS, small manoeuvres due to sloshing of fuel or
liquid aboard the STS are highly undesirable.

These examples demonstrate the importance of increasing the knowledge in control-
lability of spacecraft, in particular the interaction between the liquid dynamics and the
dynamics of the spacecraft. An important aspect of these fluid-flow problems in space is
the absence of gravitational effects. Hence, capillary effects, such as wall adhesion and
surface tension, can not be neglected [91].

There are three possible methods to study the fluid-flow problems that have been
described above, namely

e theoretical,
e experimental,
e numerical.

The equations that govern the motion of a liquid are known for more than 150 years
and named after Navier (1823) and Stokes (1845). However, except for some simplifica-
tions, the Navier-Stokes equations can not be solved analytically.

Experimental methods have been, and still are, very popular for studying liquid mo-
tion. However, if capillary forces play an important role, experiments are rare since
experiments in space are very expensive. Hence, the launch of the experiment satellite
SloshSat FLEVO (an acronym for Facility for Liquid Experimentation and Verification
in Orbit) in a few years is very welcome (see figure 1.2 and the cover of this thesis). For

Figure 1.2: Mock-up of the experiment satellite SloshSat FLEVO.

SloshSat, the Dutch National Aerospace Laboratory NLR is the main contractor. Slosh-
Sat is a small, free-flying satellite that is launched from the Space Shuttle. Its experiment
tank is a cylindrical container with two hemispherical ends having a volume of nearly 87
litres. The tank is partially filled with approximately 33 litres of water, representing a
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liquid mass that will be 26% of the total mass of the spacecraft. The satellite will per-
form various manoeuvres for studying liquid dynamics in a micro-gravity environment
and the interaction between the liquid motion and the motion of the spacecraft [87, 88].
Of course, micro-gravity experiments on earth are possible, but micro-gravity can be ob-
tained for a few seconds only (for example in parabolic flight or in a drop tower). Thus
the flight of SloshSat, which will take approximately 48 hours, is potentially very valu-
able for better understanding of liquid dynamics and coupled solid-liquid dynamics under
extra-terrestrial conditions.

The third method, numerical simulation, for studying liquid dynamics is known as
Computational Fluid Dynamics (CFD) and becomes increasingly popular. Not only
because of the huge growth in computer resources, but also due to the development of
numerical algorithms, simulations of complex fluid-flow problems are feasible and reliable
nowadays. Especially for fluid flow in a micro-gravity environment, where theoretical
and experimental methods are rare, numerical simulations play a crucial role in better
understanding of the flow phenomena.

In this thesis a numerical method is developed (which has been implemented in a
computer program called COMFLO) for the simulation of fluid flow in a micro-gravity
environment. Fluid flow in partially-filled tanks under extra-terrestrial conditions is char-
acterised by low values of the Bond number Bo, which is a dimensionless number indi-
cating the relative importance of gravitational forces compared to capillary forces, and
the Weber number We, indicating the relative importance of inertial forces compared to
capillary forces. Hence, much attention is given to the modelling of effects of capillarity.
The model is developed in three dimensions and complex-shaped flow domains are incor-
porated; both being crucial ingredients for accurate simulation of extra-terrestrial flows.
Also included in the model is the interaction between the liquid dynamics and the solid-
body dynamics (see [89], and the many references therein, for more information about
coupled solid-liquid dynamics in a micro-gravity environment). As a spin-off, COMFLO
has been used for simulating terrestrial fluid-flow problems (i.e. for high Bo) [14, 20].

1.2 Computational Grid

One of the first choices that has to be made for the development of a numerical model is
the type of computational grid. Basically, a computational grid has two characteristics:
the grid is structured or unstructured and it is boundary fitted or non-boundary fitted.

In a structured grid, all the grid cells have the same number of cell faces and the
number of cells surrounding each grid point is constant. An orthogonal grid is a structured
grid with the extra feature that all the cell faces meet at right angles. Such a grid is usually
called a Cartesian grid. If either the number of cell faces per grid cell or the number of
grid cells surrounding a grid point is not constant, then the grid is called unstructured. In
the left of figure 2.3, in which the circle is assumed to be the flow domain, an example of
an unstructured grid is shown. In the middle and in the right of this figure, two examples
of structured grids are drawn.

A computational grid is called boundary fitted if the boundary of the flow domain
coincides completely with cell faces of the grid [32]. In a non-boundary-fitted grid, some
computational cells may be cut by the boundary of the flow domain (such cells are called
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cut cells) [11, 53, 75, 82]. The two grids in the left and the middle of figure 2.3 are
boundary fitted, the Cartesian grid in the right of this figure is non-boundary fitted.

In general, it is extremely difficult to generate structured, boundary-fitted grids for
arbitrary complex-shaped flow domains (especially in three dimensions). Even the gen-
eration of qualitative good unstructured grids — in a qualitative good triangular grid,
for example, the angles between grid lines should not be too small — is not a trivial
task and is often more time consuming than the flow simulation itself. This is in huge
contrast to the generation of a Cartesian grid, which takes negligible time with respect
to the remaining part of the flow simulation.

An advantage in using unstructured grids is the ability to generate grids for very
complex-shaped flow domains (also in three dimensions). Further, it is relatively easy
(compared to structured grids) to obtain a finer mesh size in regions of interest, e.g.
in sharp corners of the flow domain or in regions with high gradients in the velocity
field. Refinement of a structured (but non-Cartesian) grid to obtain a desired mesh size
in a certain region of the flow domain is often very difficult. For Cartesian grids, it is
possible to use (global) stretching to obtain a larger mesh resolution in certain areas [53].
However, since the mesh size in one Cartesian direction is a function of this direction only,
the mesh size may become small also in regions where such a fine grid is not required. In
this case, local refinement of a Cartesian grid is more appropriate and relatively easy to
accomplish [97]. However, discretising the governing equations on a locally refined grid,
such that momentum and kinetic energy are conserved, is not trivial.

An important advantage of boundary-fitted grids is the easy discretisation of the
boundary conditions. Indeed, discrete boundary conditions are applied directly at the
boundary of the flow domain, which coincides with cell faces. If grid lines are not aligned
with the boundary, then special care has to be taken in discretising the boundary condi-
tions in cut cells. Moreover, cut cells may become arbitrarily small, which can result in
severe time-step restrictions. To overcome these restrictions, it is possible to redistribute
grid cells; small cells are treated simultaneously with neighbouring uncut cells [1, 95].
Another option is to permit the fluid to flow through more than one computational cell
per time step [48]. Time-step restrictions originate because of an explicit discretisation
of the convective and diffusive terms in the Navier-Stokes equations. However, it can be
shown that the convective terms do not worsen this time-step restriction in the presence
of small cut cells. Only the diffusive terms cause problems in this situation [79]. By
treating diffusion implicitly, these problems can be overcome [7]. Despite the difficulties
encountered in using cut cells, this approach often improves the results compared to a
staircase approximation of the flow domain [34, 50].

One aspect that has to be taken into account in choosing the grid topology is the
desire to simulate interface flow or free-surface flow. Since many of the numerical mod-
els for advecting interfaces are based on geometrical observations, a structured grid is
more practical for this type of simulations. In particular much research has been done
on the simulation of interface flow on Cartesian grids. Simulation of interface flow on
unstructured grids, however, is feasible [49, 74].

An interesting technique to account for complex geometries on Cartesian grids is
described in [84], where the solid boundary is treated as a free surface. A boundary
condition for the pressure is applied here, such that liquid can not flow in a direction
normal to the solid boundary.
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1.3 Discretisation Methods

Once a choice for the type of grid has been made, the governing equations can be discre-
tised on this grid. For this, two further choices have to be made. First, the positioning of
the variables or control volumes has to be determined. Second, the discretisation method
has to be chosen.

For incompressible fluids, only the pressure p and three components u, v, and w
of the velocity vector u = (u, v, w)T are required to describe the flow (in the presence
of an interface, one or more variables are needed to describe its location, but this will
be explained in section 1.4). Usually, in incompressible computational fluid dynamics,
the pressure is positioned at cell centroids, while velocities are positioned at cell-face
centroids. This positioning is known as the marker-and-cell (MAC) positioning [29] and
prevents a decoupling in the pressure when it is solved from a Poisson equation. The
positioning of the velocities at cell faces is called a staggered positioning with respect to
the pressure. Another option is to position all variables at cell centroids; a collocated
positioning [3, 75]. This approach is popular in combination with three-dimensional,
unstructured grids since this leads to a simplification in the implementation. Apart from
a collocated and a staggered positioning, all kinds of hybrid methods are imaginable.
However, no particular method is optimal in the sense that it performs superior in all
possible simulations [58, 68].

Roughly speaking, a discretisation method can be classified as one of the following:

e spectral method,

e finite-element method (FEM),
e finite-difference method (FDM),
e finite-volume method (FVM).

In spectral methods [13], the unknown velocity is written in terms of a number of
global basis functions, a Fourier series for example, whence high-order approximations to
spatial derivatives are easily feasible. However, these methods are most suitable for flow
domains with simple geometries and periodic domains.

Usually, on an unstructured grid, the finite-element method is applied [28, 51, 54, 55].
Grid cells or control volumes are then called elements. On each of these elements a ba-
sis function (e.g. an interpolation function), say U;, where i = 1,..., N runs over the
elements, is defined. The variable, say u, that has to be solved from the governing equa-
tions is written as a linear combination of these basis functions, i.e. u = Zz]\il c;U;. This
finite series is then substituted in an integral or weak form of the governing equations,
resulting in a linear system for the coefficients ¢;. The finite-element method is in partic-
ular suitable for solving parabolic or elliptic partial differential equations. For hyperbolic
equations, for example the equation for advecting an interface (see section 1.4), almost
no research has been done using the finite-element method.

Contrary to the finite-element method, the finite-difference method starts from the
differential or strong form of the governing equations [29, 44, 46, 52]. By using finite-
difference approximations of the derivatives and linearisation of nonlinear terms, the
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partial differential equations are replaced by a system of linear equations. Mostly, a finite-
difference method is used on structured, in particular Cartesian, grids. On these grids,
derivatives are easily approximated using Taylor-series expansions. A well-known finite-
difference method is the MAC method, where the governing equations are discretised on
a fixed, Cartesian mesh and markers are used for tracking a free surface [29, 39, 83].

Often, the finite-volume method [41] is thought of being similar to the finite-difference
method, which can be explained by the fact that, after using the finite-volume method,
the discretised equations can be rewritten in a form that looks similar to the discretised
equations that result from the finite-difference method. In fact, the finite-volume method
is more related to the finite-element method since it starts from a weak formulation of
the governing equations. In the finite-volume method, this formulation is also called
conservative, expressing in the momentum equation, for example, that an increase of
momentum in a control volume is due to a net inflow through the boundary of that
control volume. By choosing control volumes such that every control-volume face belongs
to exactly two control volumes, a fully conservative numerical model is easily achieved [7].
Indeed, by computing mass and momentum fluxes at control-volume faces, the amount
of mass and momentum that leaves one control volume is gained in an adjacent control
volume. Finite-volume methods are attractive since rigorous conservation of mass and
momentum is considered more important than the formal accuracy of the discretisation
method [47, 76]. Further, it is possible to discretise the Navier-Stokes equations such
that symmetry properties of the continuous differential operators in these equations are
inherited by the discrete difference operators, which is advantageous for the stability of
the numerical method [82].

1.4 Interface Flow

An important feature in many problems in fluid dynamics is the presence of an interface:
a separation between two (or more) fluid phases. In general, the location of the interface is
not known in advance and is part of the problem that needs to be solved. An important
class of interface flows is formed by the free-surface flows, in which the density and
molecular viscosity of one phase are much smaller than those of the other phase, e.g.
air and water. For free-surface flows, it is often possible to simulate only the dynamics
of the heavier phase (water) since the motion of the lighter phase (air) has negligible
effect on it [6, 35, 47, 52]. However, applications exist in which the dynamics of the air
can not be neglected [57, 92]. For simulation of interface flows, two aspects have to be
taken into account, namely the advection of the interface and the application of boundary

conditions at the interface. Comprehensive reviews of interface advection methods can
be found in [43, 45, 63, 66].

1.4.1 Advection Methods

Advection algorithms can be classified as one of the following two types:
e tracking,

e capturing.
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In tracking methods, discrete points, say x;, positioned on the interface are tracked.
This is done by integrating the equation

dZL'Z'
dt

where u; is the velocity at x;. Thus, tracking methods are Lagrangian methods for
interface advection.

The points z; can coincide with points of the computational grid. In this case the
grid deforms in time and the method is called a moving-mesh method [21, 28, 54]. A
drawback of a moving-mesh method is the possibly large deformation of grid cells due to
considerable shear or vorticity in the velocity field.

Another way of tracking the interface is by moving (massless) particles, distributed
along the interface, through a stationary grid [52, 60, 75]. Such a method is usually called
a front-tracking method [25]. In this case actually two grids are part of the numerical
model: an FEulerian grid on which the equations governing the fluid dynamics are solved
and a Lagrangian grid (that is in general one dimension lower than the Eulerian grid) for
tracking the interface [55]. In front-tracking methods, the grid points distributed over
the interface may get deformed. However, since the Lagrangian grid in these methods is
two-dimensional at most, it is often feasible to add, remove, or reconnect grid points if
the Lagrangian grid gets too deformed [51]. This method is also exploited in [10], where
subgrid information is used for converging fluid fronts.

In capturing methods, the interface is not tracked explicitly, but is captured or recon-
structed from Eulerian data. In a two-phase flow, for example, a so-called colour function
C is introduced in every computational cell by

= Uy,

C in phase 1,
C =<0y in phase 2,
> (7 and < (5 at the interface,

where it is assumed that C < C5. The interface is then defined as the transition region
Ci < C' < (5. From this it follows that the interface has finite width. In multi-phase
flows a well-known colour function is the density [41]. The evolution of the colour function
is given by Do o

i = B +(u-V)C =0, (1.1)
stating that points in one phase remain there. In this equation w is the liquid velocity.
The main problem of capturing methods is that the interface has finite width (in the
order of the mesh size).

The most intuitive way of advecting the interface in a capturing method is to discretise
equation (1.1) using a finite-difference or finite-volume method. This is called a contin-
uum advection method and assumes that the colour function C' is smooth. However, in
interface flow and in the limit of zero mesh size, the function C'is discontinuous over the
interface. Hence, continuum advection schemes have difficulties in advecting interfaces
accurately. Typically, these methods diffuse the interface, broadening the width of it to
several mesh cells.

Obviously, the main problem encountered in the continuum advection method can
be solved by introducing a colour function that varies smoothly throughout the liquid,
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in particular across the interface. This is the key idea of a level-set method [70, 72]. A
function ¢ (2, t) is introduced, such that ¢ (2, 0) denotes the signed distance (positive in
fluid 1 and negative in fluid 2) of the point @ to the interface at time ¢ = 0. The interface
is then given as the zero level set of the level-set function ¢, which is evolved in time by

aa—f + u,|Vy| =0, (1.2)
where u,, = u - n is the normal velocity of the interface. The normal n is computed as
n = V¢ /|Vy|. Since the level-set function is a smooth function, it can be advected using
standard discretisation of equation (1.2). In general, ¢ (x,t) is not a distance function
for all time ¢ (e.g. if the velocity field contains shear). The standard level-set method
has serious problems with respect to mass conservation. In [71] the level-set method is
combined with a VOF method (see hereafter) in order to overcome problems with mass
conservation. By using a re-distancing algorithm [69], the standard level-set method can
be improved as well.

The most popular capturing method for advecting interfaces is the volume-of-fluid
(VOF) method introduced by Hirt and Nichols [35]. In this method, a VOF function F
(with values between zero and one) is introduced, indicating the fractional volume of a
computational cell that is filled with a certain phase (in a two-phase fluid problem 1 — F
then denotes the fractional volume of the cell filled with the other phase). The evolution of
the VOF function is given by DF/Dt = 0. The main difference between the VOF method
and other capturing methods is the treatment of the nonlinear advection term in this
equation. While continuum advection methods and level-set methods use a discretisation
of this term, VOF methods treat it geometrically. In every computational cell the interface
is reconstructed. Hereto, several methods can be applied, e.g. a piecewise-constant
reconstruction, where the interface is aligned with one of the Cartesian directions [44],
or a piecewise-linear reconstruction, where the interface is allowed to vary linearly in
a cell (see [61] for a comprehensive review of reconstruction methods). Based on the
reconstructed interface and the velocity field that has been computed from the governing
equations, fluxes are computed at cell faces and fluid is transported from one cell (donor
cell) to an adjacent cell (acceptor cell). The method for advecting a linear reconstruction
of the interface was introduced by Youngs [96]. Often, the fluxing of fluid from donor
cells to acceptor cells is split for the Cartesian directions [62], whence great care has to
be taken to keep the values of the VOF function at the end of a time cycle between
zero and one in order to prevent gain or loss of mass (usually VOF values below zero
and above one are set to zero and one respectively at the end of a time cycle, herewith
destroying mass conservation). Unsplit or multi-dimensional methods have less problems
with undershoots or overshoots in the VOF function, but are far more complex [74].
Many variations of Youngs’ method have been studied, all using a linear reconstruction
of the interface. Although these methods are generally more complicated than Youngs’
original method, they do not give superior results [2, 27, 30, 31, 42, 63].

For validating advection algorithms, several benchmark problems have been reported
by Rider and Kothe [61]. All these problems use a velocity field that is prescribed ana-
lytically, rather than being computed from the equations governing the liquid dynamics.
Hence, these benchmark problems are not always sufficient for evaluating advection meth-
ods.
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1.4.2 Boundary Conditions

At the interface a boundary condition is needed for the pressure. Moreover, if only one
phase is modelled since the motion of the other phase has negligible influence (e.g. in
free-surface flows), boundary conditions are needed for the velocity as well [9, 36]. In
particular the boundary condition for the pressure is complicated if capillary forces have
to be taken into account, like in fluid flow in a micro-gravity environment. In this case the
pressure at the interface depends on its curvature (and of course on the surface tension
of the fluids). The mean curvature x of the interface is given by

k=V n, (1.3)

where n is the normal of the interface. Several methods for computing the curvature can
be applied (see for example [59]). Of course, equation (1.3) can be discretised using finite
differences. However, since the normal is only defined at the interface, estimating the
normal accurately is a nontrivial task, whence computing the curvature using a discrete
version of equation (1.3) may be highly inaccurate. If the interface is single valued, a
height function can be defined [8, 52|, from which the curvature can be computed more
accurately. In fluid flow where the topology of the interface changes dramatically, it is
not possible to define a global height function (i.e. throughout the entire flow domain).
In this case a local height function (e.g. in every computational cell) can be defined for
estimating the curvature of the interface as is shown in chapter 2 of this thesis.

Another method for incorporating surface tension (instead of applying a boundary
condition at the free surface) is to add a surface force to the Navier-Stokes equations.
This is a volume integral containing a delta function and the surface-tension force. The
delta function is zero everywhere except at the interface. For an accurate discretisation of
this integral, the interface is broadened to a width of approximately three computational
cells, for which various techniques can be used [46, 90]. This method for incorporating
surface tension is called the continuum surface force (CSF) method [5, 44, 63]. Adding
a surface force to the momentum equations is an elegant method in the sense that the
boundary condition for the pressure is treated simultaneously with the governing equa-
tions. However, smearing the interface, necessary for obtaining accurate results, is used
because of numerical reasons and does not link up to the physical properties of a discon-
tinuous interface (see also [33, 60]).

For computing the curvature (1.3) of the interface a boundary condition is needed at
the intersection of the solid boundary and the interface. This intersection is called the
contact line and is, in three dimensions, a one-dimensional subset of the flow domain.
For the boundary condition at the contact line basically two methods are available. The
first method assumes a static contact line. In this method the position of the contact
line is fixed. Hence, the angle between the solid boundary and the interface may change
in time [6, 17, 18]. The second method prescribes a static contact angle in which the
interface intersects the solid boundary at a fixed angle. As a consequence, in this method,
the position of the contact line varies in time [5, 16, 40, 55]. For certain combinations
of material properties (of fluid, air, and solid boundary), assuming a static contact angle
seems to be correct. For other combinations a dynamic contact angle, where the an-
gle depends on the velocity (magnitude and sign) of the contact line, seems to be more
appropriate. Apart from these two methods, hybrid methods are possible (see for exam-
ple [91]). Presently, the physics of the contact line is not well understood yet and a lot
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of research is being done on how to model contact-line dynamics correctly. In this thesis
contact-line dynamics is modelled by a static contact angle. Although this may lead to a
transient behaviour of the liquid that is different from a model that assumes a dynamic
contact angle, steady-state solutions are predicted correctly. Moreover, for low Weber
numbers, the transient dynamics is expected to show close correspondence between the
two contact-line models.

1.5 Dynamical Interaction

As was mentioned in section 1.1, coupling between the solid-body dynamics and the liquid
dynamics is an important aspect of fluid-flow problems in space. The lack of references
on numerical simulations of coupled solid-liquid dynamics in a micro-gravity environment
demonstrates the complexity of these problems. However, some terrestrial applications of
coupled solid-liquid dynamics have been simulated. Mostly, the falling of rigid bodies in
air (or any other viscous fluid) is studied, e.g. the oscillatory behaviour of a falling piece
of paper [37]. Other examples are described in [15], where the flow of liquid in anti-roll
tanks aboard ships is simulated, and in [64], where the braking characteristics of vehicles,
partially filled with liquid, is studied.

For simulation of coupled solid-liquid dynamics two models (one for the liquid dynam-
ics and another for the solid-body dynamics) are discretised (see also [23, 24, 64]). Since
both models have different characteristics, it is quite difficult to combine them and solve
the discretised systems together. However, solving the systems sequentially is from a
numerical point of view not a good idea. Indeed, a hierarchical method will not be stable
for all ratios between the solid-body mass and the liquid mass. Similar stability problems
are also encountered in other partitioned models, e.g. the viscous-inviscid interaction in
boundary layer flow, where they are solved using a quasi-simultaneous method [12, 77].

1.6 Outline

This thesis contains four chapters, of which this introduction is the first. In chapter 2 the
flow of a liquid in stationary containers is modelled. In chapter 3 this model is extended
by coupling the liquid dynamics with the dynamics of the container. Both chapters 2
and 3 start with an explanation of the mathematical model, then discuss in detail the
numerical model, and end with results. The thesis ends with a summary and conclusions
in chapter 4. In figure 1.3 the structure of this thesis is summarised. Below, the outline
of chapters 2 and 3 is discussed in more detail.

Chapter 2 starts with the mathematical model for liquid dynamics (section 2.1). This
model consists of the Navier-Stokes equations, which govern the flow of a Newtonian,
incompressible fluid. The Navier-Stokes equations are written in conservation form, which
is the appropriate form for discretising these equations using the finite-volume method.
Also, in this section, the boundary conditions are stated making the mathematical model
complete. Boundary conditions are needed at the solid boundary and at the free surface.
At the former, the no-slip boundary conditions for a viscous fluid are prescribed. At the
free surface, boundary conditions for the velocity and the pressure are needed. Moreover,
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Figure 1.3: Qutline of thesis.

at the contact line a boundary condition for computing the curvature of the free surface
is required.

In this thesis the Navier-Stokes equations are discretised on a Cartesian grid because
of the advantages described in section 1.2. To be able to handle complex geometries the
cut-cell technique is applied. Cut cells are represented using so-called apertures [1, 7, 56].
Further, for distinguishing the different characteristics of computational cells, a labeling
method is used. The use of apertures and labels is explained in section 2.2.

In section 2.3 the governing equations and boundary conditions are discretised in space
and time. For the spatial discretisation the finite-volume method is used. This section
is split into several subsections discussing subsequently the spatial discretisation of the
continuity equation and the momentum equations, conservation of energy, the temporal
discretisation, the method for solving the discretised equations, and the discretisation of
the free-surface boundary conditions.

The treatment of the free surface is discussed in section 2.4. Two methods for ad-
vecting the free surface are presented, namely the method of Hirt and Nichols and the
method of Youngs. For Youngs’ method a piecewise-linear reconstruction method is used
for determining the position of the free surface. The reconstructed free surface is then
advected using the computed velocity field. The original method of Hirt and Nichols,
described in [35], creates lots of “flotsam” and “jetsam” — small bits of fluid that get
(unphysically) separated from the main body of fluid. Hence, a local height function is
introduced for transporting fluid near the free surface (see also [65]). This local height
function prevents massive creation of flotsam and jetsam. The original methods of Hirt
and Nichols and of Youngs lose or gain mass considerably. In combination with a local
height function these methods conserve mass rigorously.

Finally, results are presented in section 2.5, covering validation of all aspects of the
numerical model. First, some simulations with prescribed velocity fields are performed
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for testing the advection methods of Hirt and Nichols and of Youngs. Also, the effect
of using a local height function is studied. Then, both advection methods are tested
in simulations with a velocity field that is computed from the Navier-Stokes equations.
These simulations show that the method of Hirt and Nichols combined with a local height
function gives the most accurate results, whence this method is exploited throughout the
rest of the thesis. The models for surface tension and the contact line are validated in a
series of simulations of wall adhesion in square containers. Also, wall adhesion in circular
containers is simulated for validating the use of cut cells arising from complex geometries
embedded in a Cartesian grid.

In chapter 3 the model of chapter 2 is extended by coupling the liquid dynamics
with the dynamics of the container. First, the Navier-Stokes equations are adapted by
incorporating a virtual body force, representing the motion of the solid body in which
the liquid is contained (section 3.2).

In section 3.3 the mathematical and numerical model for the solid-body dynamics is
explained. The motion of the solid body is governed by an equation for linear momentum
and an equation for angular momentum. In the right-hand side of these equations, terms
representing the force and torque due to the sloshing liquid appear. Discretisation of these
equations would result in an unstable method if the liquid mass is too large compared
to the mass of the solid body. This instability is exemplified with a simple mass-spring
model. To overcome this stability problem the governing equations for the solid-body
dynamics are rewritten, such that part of the liquid mass appears on the left-hand side
of the equations. This part is treated simultaneously with the motion of the solid body.
The remaining part of the liquid mass stays on the right-hand side and represents the
sloshing motion with respect to a reference frame that moves with the solid body. For
solving the discretised equations a fourth-order Runge-Kutta method is used.

Results of the numerical model for coupled solid-liquid dynamics are presented in
section 3.4. First, the stability of the method is validated by simulating the free fall of a
liquid-filled container. Then, for validating the solution method, the motion of an empty
tank, for which an analytical solution is available, is simulated. For testing the interaction
between the liquid dynamics and the solid-body dynamics, the rotational motion of a
container, completely filled with liquid, is simulated. For this simulation a grid-refinement
study and a time-step analysis is performed. Also, the effect of different liquid/solid mass
ratios is studied. Finally, in this section, the flat-spin motion of containers partially filled
with liquid is simulated. In a flat spin, initially, the container is rotating around the axis
with minimum moment of inertia. From physics it is known that a free-flying body can
rotate uniformly around one of the three principal moment-of-inertia axes only; rotation
around the axis with intermediate moment of inertia is unstable, while rotation around
the other two axes is stable. Thus, the initial condition (rotation around the axis with
minimum moment of inertia) can be a steady state. However, if damping in the coupled
system occurs (e.g. due to the viscous liquid), kinetic energy is lost. Hence, in this case,
rotation around the axis with maximum moment of inertia (corresponding to a state of
minimum kinetic energy) is the steady state in which the coupled system settles itself.
As an example, the flat-spin motion of a small spacecraft (the Ejectable Ballistometer,
better known as the Wet Satellite Model or WetSat), which flew in 1992, is simulated.
Results from this simulation are compared to actual flight data.





