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ABSTRACT 

 

An in vitro model using a parallel-plate fluid flow chamber is supposed to 

simulate in vivo fluid shear stresses on various cell types exposed to dynamic 

fluid flow in their physiological environment. The metabolic response of cells 

in vitro, is associated with the wall shear stress. However, parallel-plate flow 

chambers have not been characterized for dynamic fluid flow experiments. We 

use a dimensionless ratio h/λv, in determining the exact magnitude of the 

dynamic wall shear stress, with its oscillating components scaled by a shear 

factor T. It is shown that, in order to expose cells to predictable levels of 

dynamic fluid shear stress, two conditions have to be met: 1) h/λv < 2, where h 

is the distance between the plates and λv is the viscous penetration depth; and 

2) fo < fc / m, where the criticial frequency fc is the upper threshold for this flow 

regime, m is the highest harmonic mode of the flow, and fo is the fundamental 

frequency of fluid flow. 
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INTRODUCTION  

 

The parallel-plate flow chamber (PPFC) is used for flow stimulation of various 

cell types, e.g., bone cells and endothelial cells (1). A cell monolayer attached 

to one of the internal plate surfaces is subjected to fluid flow by creating a 

pressure gradient along the chamber. To calculate the resulting shear stress on 

the cells, the mathematical model assumes a Newtonian fluid in which the 

shear tensor is proportional to the deformation tensor. For steady flow between 

infinitely wide parallel plates, wall shear stress τw is calculated as a function of 

the measured flow Q: 

2

6
bh

Q
w

µτ =   [1] 

with µ = fluid viscosity, b = width of the chamber, h = distance between plates. 

For finite chamber dimensions (finite b/h), the fluid velocity profile remains 

parabolic between the plates, but vanishes at the boundaries of the rectangular 

channel (Figure 1A, B) (2, 3). The shear stress profile, calculated from the 

velocity gradient, has maximum magnitudes at the plate surfaces and vanishes 

at the corners of the channel (Figure 1C). Less than 1% difference from a full 

parabolic velocity profile occurs after an entry length Lentry = 0.04hRe 

(Reynolds number Re =Qρ/(µb)) (4). Practically, more than 85% of the surface 

is exposed to a homogenous wall shear stress for b/h > 20.  

   Equation [1] assumes steady flow, but is also used to estimate the average 

and maximum wall shear stress in dynamic flow regimes. Flow frequencies 

employed in stimulation of cells generally remain below 10 Hz (5-7), but 

physiological fluid flow might involve much higher frequencies. For example, 

small strains (< 10 µε) in bone show strain information extending to 40 Hz (8). 

Theoretical extrapolation predicts that strain induced flow in bone elicits shear 

stresses up to 3 Pa for 100-200 µε at 20-30 Hz (9). Blood flow also involves 

dynamic regimes with non-negligible higher harmonics: the spectral content of 

flow in the abdominal aorta of dogs, for example, shows frequencies reaching 

80 Hz (10). High frequency modes have been shown to be stimulative to cells 
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despite their small amplitudes; thus, fluid flow studies should be extended also 

to this range. It is questionable, though, if [1] is valid also for dynamic flows in 

PPFCs. Indeed, a dichotomy in oscillating flow regimes is reported for parallel-

plate systems, characterized by the Womersley number Wo (= √(ω/ν) Lc, where 

ω = 2πf, f = flow frequency, ν = kinematic viscosity, Lc = characteristic length; 

(11, 12)); this explicitly points at a limitation for the use of PPFCs under high 

frequency regimes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1. The flow chamber and its velocity and shear stress profile in arbitrary units. A. 
Diagram of a parallel-plate flow chamber of width b, height h, and length L, in its orientation 
in the x-y-z axes. The fluid is forced through the chamber by a steady pressure gradient along 
the x-axis. (b) and (c) show the calculated velocity profile u and the shear stress profile τ, 
respectively, for an aspect ratio b/h = 80. The arrows indicate that the profiles were taken very 
near the right edge of the flow chamber. The shear stress has its maximum value at the plate 
surfaces and vanishes at the chamber corners. Parabolic velocity profile and homogenous wall 
shear stress are characteristic for steady flow between parallel plates. 
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   The aim of this paper is to characterize PPFCs for high frequency flow 

regimes, and to determine how eventual limitations can be reduced. We derived 

a relationship between the wall shear stress and flow, as well as between flow 

and pressure gradient under oscillating regimes, generalized to include higher 

harmonics. 

 

 

MATHEMATICAL MODEL 

 

Dynamic flow  

The mathematical model assumes a laminar flow of a Newtonian fluid under 

isothermal conditions and imposes a no-slip boundary condition. The pressure 

gradient over the PPFC has a steady component γ and an oscillating component 

γo of frequency f. The Navier-Stokes equation is then: 

)sin(2
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−
∂
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where velocity field u is a function of y and time variable t. The principle of 

superposition implies a generalization to dynamic flow regimes with higher 

harmonics. The solution of the velocity field has the form (Appendix [A.1-4]; 

(13)): 

)sin()()()()(),( 321 tyCtCosyCyCtyu ωω ++=   [3] 

In order to formulate the relations between the wall shear stress, the flow, and 

the pressure gradient, we introduce two dimensionless scaling factors: shear 

factor T and flow factor K, respectively. 
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Shear factor T(h/λv)  

The oscillating wall shear stress component is related to flow amplitude qo, 

chamber width b, height h, and viscous penetration depth λv (=√(2ν/ω); ν = 

ratio of fluid viscosity to fluid mass density; ω = 2π f) as: 
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We simplify [4] by introducing shear factor T(h/λv) including all functions with 

the argument h/λv, to scale the oscillating wall shear stress amplitude. The total 

wall shear stress τwt solution of [2] is then: 
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where Qo is the steady flow component and ψ is the phase difference between 

wall shear stress and flow. Figure 2 shows the velocity profile variations for 

various frequencies. 

   T(h/λv) (Appendix [A.11])  is close to unity when the wall shear stress is 

proportional to flow, i.e., when h/λv < 2 (Figure 3a). From [5] and [1], the 

oscillating wall shear stress amplitude becomes 6µQT/(bh2). The critical  

frequency 11.2 Hz is calculated at h/2 =λv, using the fluid physical properties 

of the culture medium and h = 0.3 mm (Figure 2). Decreasing h increases the 

critical frequency (Figures 3b,c), increasing h demands increasing the fluid 

viscosity µ (Figure 3d). The physical properties of the fluid (µ, ρ), and the 

distance between the plates (h) determine the critical frequency fc:  
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Figure 2. The velocity profiles in one cycle of oscillation. The graphs show the velocity 
profiles at time intervals an 8th part of the corresponding period. We simulated a typical cell 
culture medium (Dulbeccos’ Modified Eagle Medium (DMEM) with supplements, viscosity = 
0.0078 poise, density = 0.99 g/cm3, at 37oC), subjected to a flow amplitude of 0.15 ml/s 
between plates separated by 0.03 cm. A. The velocity profiles at 5 Hz, exhibit quasi-
parabolic form throughout one flow cycle. B. At a frequency of 11.2 Hz, the quasi-parabolic 
velocity profile breaks down by an arching between the plates (arrow). At higher frequencies, 
arching, occurs near the plates (20 Hz, C), or between the plates (44.8 Hz, D). E and F show 
the velocity profiles at 5 Hz and 11.2 Hz respectively, imposed upon a steady flow 
component. Note that the symmetry about the y-axis is lost due to the steady flow component. 
However, the quasi-parabolic form of the velocity profile still breaks down at 11.2 Hz as 
indicated by the arrows in F. Quasi-parabolic velocity profile, indicative of quasi-steady flow 
breaks down when the flow frequency is above 11.2 Hz for the given fluid properties and 
chamber dimensions. 
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Figure 3. The shear factor. A. The shape of the shear factor (Appendix (A.11)) distinguishes 
a dichotomy in flow regimes separated by h/λv = 2.0. B. For a typical cell culture medium 
(DMEM, with supplements) the T(h/λv) curve digresses from unity depending on the value of 
h. C. shows that the critical frequency can be raised by minimizing h while keeping T(h/λv) 
close to unity for DMEM. D. Shows that the fluid viscosity µ can be increased (from 0.005 
poise, assuming that ρ is not significantly changed) while keeping T ~ 1.0, even at higher h 
values up to about 1 mm. In both C and D, the arrow indicates the region where T ~ 1.0 i.e., 
where h/λv < 2 validating the adaptation of equation (1) for dynamic flow.  
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Figure 4. The flow factor. A. The flow factor K(h/λv) (Appendix (A.12)) varies from unity by 
2% at h/λv = 1.0 and drops to 0.78 at h/λv = 2.0. B. The product between the flow and shear 
factor is asymptotic to the horizontal axis. T(h/λv)K(h/λv) scales the wall shear stress when the 
oscillating pressure gradient amplitude is kept constant as h/λv is varied (TK = 0.79 when αh 
= 2). A and B illustrate that varying h/λv while keeping the pressure gradient amplitude 
constant leads to a lowering of the initial wall shear stress compared to its value if the flow 
were steady. C. TK drops faster at higher values of h and f. D. shows that TK drops faster for 
lower values of µ and higher h. In both C and D, the arrow indicates the region where TK 
~1.0, i.e., h/λv < 1. Equation (1) is valid for h/λv < 2 provided that the flow measurement is 
simultaneous to the change in h/λv parameters.  
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Flow factor K(h/λv) 

   The oscillating flow amplitude qo can be scaled by a flow factor K(h/λv) in 

relation with the oscillating pressure gradient amplitude γo: 
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v
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=   [7] 

K (Appendix [A.12]) is a decreasing function of h/λv (Figure 4). This shows 

that pressure gradient drops for h/λv > 1, which means that the wall shear stress 

is underestimated for h/λv > 1. For example, there is an overestimation of the 

magnitude of the wall shear stress by 21% at the critical frequency (h/λv = 2). 

In order to correct for that, the oscillating wall shear stress amplitude has to be 

scaled by the product TK when the oscillating pressure gradient amplitude is 

kept constant:  

)()(6
2 vv
o hThK

bh
q λλµ   [8] 

So, [8] should be used in experimental set-ups in which the pressure gradient is 

controlled, because the resulting shear stress is underestimated. The wall shear 

stress is linear to flow when h/λv < 2 but the flow is linear with the pressure 

gradient when  h/λv < 1. 

 

Higher harmonic modes  

The flow profile may show a more arbitrary shape depending on the type of 

pump mechanism used. When the flow is periodic, it can be expanded into a 

Fourier series (see [A.10]), and from [5] follows: 
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where ψ is the phase difference between the wall shear stress and the 

corresponding flow component at the given indices. Shear factor T is 

discretized due to the form of the angular frequency (ωn = 2πfon, for n = 

1,2,3…). The summation limit m imposes that for n > m, flow coefficients qn
c 

or qn
s become negligible compared to the average flow. To apply a flow regime 
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such that h/λv < 2 for all harmonics, the highest harmonic mode (fom) must be 

less than the critical frequency fc. 

 

 

DISCUSSION  

 

For dynamic regimes in a PPFC, the relations between wall shear stress, flow, 

and pressure gradient, were derived using dimensionless scaling factors T(h/λv) 

and K(h/λv). The dimensionless parameter h/λv was the key for establishing 

quasi-steady flow in laminar regimes. The analysis was expanded to apply for 

arbitrary dynamic laminar flows, identifying the limits for the highest harmonic 

mode of the flow.  

   To establish laminar quasi-steady flow under dynamic regimes in PPFCs, the 

following conditions apply: 1) h/λv < 2 based on the consequent quasi-

parabolic form of the velocity profile, and 2) fo < fc / m, where the criticial 

frequency fc is the upper threshold for this flow regime and m is the highest 

harmonic of flow. Quasi-steady flow means that the dynamic wall shear stress 

follows the changing flow linearly. When the flow is beyond the quasi-steady 

regime, there will be less oscillation due to backflow (figure 2 b-d), but 

shearing might increase at the plate walls since the shear factor T(h/λv) > 1 

(Figure 3, [5]). 

   Attached cells occupy < 4.1% of the chamber height, based on unsheared 

endothelial monolayers (3.4±0.7 µm, see (14); for h = 100-300 µm). Since the 

wall shear stress is estimated by average parameters (flow or pressure 

gradient), assumption of smooth rigid walls is reasonable.  The Reynolds and 

the Womersley numbers empirically predict the transition from laminar to 

turbulent oscillating flow. Measurement on a dog’s blood vessel relates the 

maximum Re to 150-250 times Wo (11). The transition to turbulent flow is 

reached at Re < 2640 (15), however, values as low as Re ~ 1000 have been 

found experimentally. Assuming that the transition to turbulent flow for flow 

between parallel-plates is Re = 2000, this transition occurs at a supplementary 
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condition: h/λv = 8/√2 ≈ 5.7. The flow regime where h/λv < 2, is far from 

turbulence provided the fluid properties remain stable.  

   Our findings provide guidelines in adapting the PPFC in terms of parameters 

in h/λv for investigating cell mechanosensitivity in vitro. Using the PPFC, the 

effect of physiological flow regimes on cells can be studied involving a wide 

range of frequencies, types of viscous fluids, and values for h that approximate 

actual shearing flow in various anatomical sites, such as blood vessels or the 

lacuno-canalicular network in bone.  
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APPENDIX  

The velocity profile for dynamic flow between parallel plates takes the form of 

equation [3] with: 
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where the following functions were defined: 
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The phase difference between the velocity of a fluid layer and the pressure 

gradient is: 

)
)(
)((tan

3

21

yC
yC−=σ   [A.5] 

when the velocity profile takes the form: 
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The oscillating wall shear stress calculated from the gradient of the velocity is 

then: 
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where the phase difference is: 
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For an expression when the oscillating wall shear stress is related with the flow 

(see equation (4)), the phase difference is: 
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A smooth periodic continuous flow can be expanded into its Fourier series with 

an upper index indicating a “hard” limit giving a series termination at m, or a 

“soft” limit giving negligible terms after m: 
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The shear factor T(h/λv) and the flow factor K(h/λv), are derived from (A.7): 
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LIST OF SYMBOLS 

γ = constant pressure gradient component for dynamic fluid flow  

γo = amplitude of the oscillating pressure gradient component for dynamic flow  

ϑ = phase difference between the oscillating wall shear stress and the 

oscillating pressure gradient 

h/λv = viscous penetration depth  

µ = fluid viscosity  

µ∈ = microstrain 

ν = kinematic viscosity 

ρ = fluid density  

σ = phase difference between the velocity and the oscillating pressure gradient  

τw = wall shear stress for steady flow  
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τwo = oscillating wall shear stress  

τwt = total wall shear stress for dynamic flow  

τ = fluid shear stress  

ψ = phase difference between the wall shear stress and the oscillating flow  

ω = 2πf = angular frequency  

∇ = del operator 

∇2 = Laplacian operator 

An = velocity field amplitudes in the summation term of the steady flow 

solution  

b = PPFC width 

cn = velocity field function arguments in the summation term of the steady 

flow solution 

f = flow frequency  

fc = critical frequency 

F = external force density term  

h = distance between the plates 

K = flow factor 

L = wetted length of the flow chamber  

m = highest frequency mode 

Pa = Pascal 

 p = pressure  

qo = amplitude of the oscillating flow component  

Q or Qo = flow  

Re = Reynolds number  

T = shear factor  

u = velocity field  

Wo = Wormesley number 

x = length axis 

y = height axis 

z = width axis 
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