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ABSTRACT The capacity of bone tissue to alter its
mass and structure in response to mechanical de-
mands has long been recognized but the cellular
mechanisms involved remained poorly understood.
Over the last several years significant progress has
been made in this field, which we will try to summa-
rize. These studies emphasize the role of osteocytes
as the professional mechanosensory cells of bone,
and the lacuno-canalicular porosity as the structure
that mediates mechanosensing. Strain-derived flow
of interstitial fluid through this porosity seems to
mechanically activate the osteocytes, as well as ensur-
ing transport of cell signaling molecules and nutri-
ents and waste products. This concept allows an
explanation of local bone gain and loss, as well as
remodeling in response to fatigue damage, as pro-
cesses supervised by mechanosensitive osteocytes.—
Burger, E. H., Klein-Nulend, J. Mechanotransduc-
tion in bone—role of the lacuno-canalicular network.
FASEB J. 13 (Suppl.), S101–S112 (1999)
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Mechanotransduction is the process by which
mechanical energy is converted into electrical
and/or biochemical signals. In principle, all eukary-
otic cells are probably mechanosensitive and physical
forces, including gravity, tension, compression, and
shear, influence growth and remodeling in all living
tissues at the cellular level (1). In vertebrates, bone is
the tissue best suited to cope with large loading
forces because of its hard extracellular matrix. This
matrix can be considered a toughened composite
material with collagen and calcium phosphate min-
eral as the structural elements (2). The notion that
bone and bones not only develop as structures
designed specifically for (future) mechanical tasks,
but that they can adapt during the life of an individ-
ual toward more effective mechanical performance,
stems from the last century (3, 4). Although func-
tional adaptation is a general phenomenon and not
specific for bone tissue, it remains intriguing that
such a hard and seemingly inert material as bone can
be gradually altered during life, and in such a
“sensible” manner. Mechanical adaptation ensures
efficient load bearing: the daily loads are carried by

a surprisingly thin structure. In trabecular as well as
in compact bone the three-dimensional organization
of the elements (plates and struts in the former,
osteons in the latter) depends on the direction of the
principal mechanical stresses during daily loading
and movement (5–7). Mechanical adaptation is a
cellular process and needs a biological system that
senses the applied mechanical loading. The loading
information must then be communicated to effector
cells that can make new bone or destroy old bone.
Osteoblasts are the cells that produce new bone by
synthesizing collagen and making it calcify; oste-
oclasts are the cells that can degrade bone matrix by
subsequent demineralization and collagen degrada-
tion (see ref. 8 for a recent review). However, the
great majority of the cells of bone tissue, some 95%
in the adult skeleton, are osteocytes, lying within the
bone matrix, and bone lining cells, lying on the
surface (9). Both osteocytes and lining cells derive
from osteoblasts that have stopped producing bone
matrix (10, 11) (Fig. 1).

Osteocytes are literally buried in bone matrix.
They form as long as new osteoblasts are recruited to
take the place of the buried osteoblast, now osteo-
cyte, on the actively forming bone surface (Fig. 1, A
and B). When the recruitment of new osteoblasts
stops, the last remaining osteoblasts flatten out and
cover the now inactive bone surface as lining cells
(Fig. 1C). Osteocytes remain in contact with the
bone surface cells and with neighboring osteocytes
via long slender cell processes that connect by means
of gap junctions (12, 13). Differentiation of osteo-
cytes from osteoblasts may facilitate the deposition of
mineral in the newly formed collagen matrix (14).
However, the matrix immediately around the osteo-
cyte cell body and processes does not calcify, and
thus a three-dimensional network of lacunae and
canaliculi is formed containing non-mineralized, os-
teoid-like matrix and the osteocyte cells. The cell
network is connected, again via gap junctions, with
the bone lining cells on the bone surface (Fig. 1C).
This three-dimensional network of interconnected
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cells that is present throughout and around a piece
of bone is a very attractive structure for the detection
of local mechanical inadequacies (15–17). Because
the cellular network neighbors on the bone marrow
stroma as well as on the periosteum, recruitment of
new osteoblasts and osteoclasts by the network is also
easily foreseen. In addition, the non-mineralized
matrix of lacunae and canaliculi is much more easily
penetrated by water and (small) molecules than the
mineralized matrix. Therefore this network may also
be considered a complex structure of pores and
channels, the lacuno-canalicular porosity.

We review the evidence that the combination of
cellular network and lacuno-canalicular porosity per-
forms the functions of mechanosensing and mech-
anotransduction in bone. We then propose a cell-
based model to explain the role of osteocytes in
regulating bone gain and loss in response to overuse
and disuse, respectively, as well as bone remodeling

in response to fatigue damage. Finally, the conse-
quence of this model for the behavior of bone under
microgravity is discussed.

OSTEOCYTES AND THE LACUNO-
CANALICULAR POROSITY IN
MECHANOTRANSDUCTION

Because they are post-mitotic (18) and embedded in
hard matrix, osteocytes are difficult to study. This
and their general appearance of inactive cells as to
protein synthesis has made them the least-studied
bone cell type. Nevertheless, information is increas-
ing in conjunction with the recent interest in their
putative role as mechanosensors. In vivo, osteocytes
have been shown to express mRNA for b-actin,
osteocalcin, connexin-43, insulin-like growth factor I
(IGF-I)2, c-fos, and c-jun, but not tumor necrosis
factor a or tartrate-resistant acid phosphatase (19).
In vitro, osteocyte cultures were found to reestablish
their stellate morphology and again form a network
via many slender cell processes and gap junctions
(18, 20–22) (Fig. 2). The osteocyte cultures pro-
duced small amounts of collagen and fibronectin
(much less than osteoblasts) but were more active
than osteoblasts in producing osteocalcin, osteonec-
tin, and osteopontin (23). Evidence for parathyroid
hormone receptors on their surface was found in
vitro (18) as well as in vivo (24). Evidence for their
role as mechanosensory cells in bone has been
steadily growing over the last 10 years. Early strain-
related changes in glucose-6-phosphate dehydroge-
nase activity were found in osteocytes after bone
loading in vivo (25) and in vitro (26). At 1 h after 5
min of loading, transient expression of c-fos mRNA
was induced in cortical osteocytes and lining cells of
rat tail vertebrae in vivo (27). Osteocytic gene regu-
lation by mechanical stress includes expression of
IGF, although the reports are somewhat variable.
Rapid induction of IGF-I was found by mechanical
stimulation of rat caudal vertebrae (28) but another
study using the same model found no effect (27).
One in vitro study using rat bone cells found in-
creased mRNA levels of IGF-II but not IGF-I (29),
whereas other studies, also using rat bone cells,
found elevated levels of IGF-I (30). IGF-I promotes
bone formation (see ref. 31 for a recent review), and
has been found to stimulate the differentiation of
osteocytes from osteoblasts (32). Another mechani-
cally regulated gene in bone is osteopontin, one of
the major non-collagenous proteins in bone matrix.
Mechanical loading increased OPN mRNA expres-

2 Abbreviations: IGF-1, insulin-like growth factor 1; PGE2,
prostaglandin E2; PGI2, prostaglandin I2; NO, nitric oxide;
TGF-b, transforming growth factor b.

Figure 1. Schematic representation of the growth of bone
tissue. A and B) a quiescing osteoblast (black cell, Fig. A1, B1)
turns into an osteocyte (Fig. A2, 3; B2, 3) because its neigh-
boring osteoblasts continue to produce osteoid, thereby
embedding the quiescing osteoblast, or pre-osteocyte, in
bone matrix. In A, during rapid growth, proliferation of
progenitor cells (arrowhead) ensures a plentiful supply of
postmitotic pre-osteoblasts (arrows), which may take the
place of pre-osteocytes. In B, growth starts to diminish be-
cause supply of proliferating progenitors has stopped and
only postmitotic pre-osteoblasts (arrow) remain. In C, no
pre-osteoblasts are left. All remaining osteoblasts stop produc-
ing osteoid, and the mineralization process continues up
until the last layer of flattening osteoblasts (Fig. C2), which
become lining cells (Fig. C3). Note that in all three cases the
kinetics of bone tissue growth are regulated by the rate of
osteoblast progenitor cell recruitment, apart from osteoblast
lifetime and osteoblast synthetic activity.
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sion via the microfilament component of the cy-
toskeleton (33) and more in mature than in imma-
ture bone cells (34). Up-regulation of OPN mRNA
levels was also found after bone loading in vivo (35).
Thus, mechanical loading activates several cellular
processes in osteocytes, including energy metabo-
lism, gene activation, growth factor production, and
matrix synthesis.

In a study on cell signaling after mechanical
stimulation, monolayer cultures of osteocytes, iso-
lated from embryonic chicken calvariae, responded
to 1 h of pulsating fluid flow with a sustained release
of prostaglandins E2 and I2 (PGE2 and PGI2, respec-
tively) (36). Osteocytes were much more responsive
than osteoblasts, and intermittent hydrostatic com-
pression had less effect than fluid flow (36, 37). In
vivo, prostaglandins are found to be essential for the
transduction of mechanical stimuli into bone forma-
tion (38), whereas in vitro as well as in vivo exogenous
prostaglandins, particularly PGE2, stimulate osteo-
blastic cell proliferation (39) and bone formation
(40). Klein-Nulend et al. (36) used fluid flow for
mechanical stimulation of the osteocytes to test the
hypothesis, developed by Cowin and associates, that
in intact bone the osteocytes are mechanically acti-
vated by flow of interstitial fluid through the lacuno-

canalicular porosity (41–43). According to this hy-
pothesis, the prime mover for bone adaptation is the
strain-driven motion of interstitial fluid through the
canaliculi and along the osteocyte processes, which is
sensed and transduced by osteocytes. Because bone
matrix is so stiff, the deformation, or strain, imposed
by physiological loads is only very small (maximally
on the order of 0.2%) (44, 45). However, in vitro,
strains on the order of 1–3% are needed to obtain a
cellular response (46, 47). The canalicular fluid flow
hypothesis proposes that, rather than the bulk strains
resulting from loading the whole bone, a local force
derived from that strain (or rather, strain rate),
activates the osteocytes. When bone is loaded, inter-
stitial fluid is squeezed through the thin layer of
non-mineralized matrix surrounding cell bodies and
cell processes toward the Haversian or Volkmann
channels, thereby producing fluid shear stress at the
osteocyte cell membrane. In trabecular bone the
lacuno-canalicular network drains on the bone mar-
row sinusoids. Haversian channels, Volkmann chan-
nels, and sinusoids themselves will not generate
meaningful amounts of shear stress during physio-
logical loading because they are much too wide
(Haversian channels are roughly 3,000 times wider
in cross section than canaliculi) (48). However, the

Figure 2. Scanning electron micrograph of a group of osteocytes, isolated from embryonic chicken
calvariae, after 3 days of culture as monolayer. The cells have re-established a cellular network by moving
away from each other and making thin, branching cell processes that connect with those of neighboring
cells (see refs. 20 and 22 for more detail). The non-random distribution of the cell processes, and their
straightness, suggest that the processes have a means to sense each other’s presence. The cell in the
upper left corner is a contaminating osteoblast. Bar 5 100 mm. Micrograph kindly provided by Dr. P. J.
Nijweide.
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combination of canalicular diameter and the diam-
eter of the osteocyte process produces an annular
porosity that is well suited to generate appreciable
fluid shear stress during physiological bone loading
(42). Assuming that these stresses perturb the osteo-
cyte surface, in particular the osteocyte processes in
canaliculi, a magnitude of 8–30 dynes/cm2 (or 0.8–3
Pa) fluid shear stress was predicted during physio-
logical loading (42). It is interesting to note that
pulsating fluid flow with a mean stress of 0.5 Pa and
5-Hz pulses of 60.02 Pa provoked an immediate
response in osteocytes, measured as a two times
increased release of nitric oxide (NO) and a five
times increased release of PGE2 and PGI2 after a
5-min application of flow (37, 49). Pulsatile fluid
flow, at an average shear stress of 0.5 Pa, was found to
be more effective than steady flow (0.4 Pa shear
stress) in modulating gene expression in osteoblasts
(50). Fluid flow rapidly increased intracellular cal-
cium in bone cells (51), an effect that was inhibited
using neomycin or gadolinium, suggesting calcium
influx via stretch-activated channels (52) as well as
release from intracellular stores (53). These studies
confirmed the efficacy of fluid flow as a mechanical
stimulus for bone cells, which was also concluded
from in vivo studies (54, 55). Two independent
studies subsequently found that fluid shear stress is
more effective than mechanical stretching on bone
cells (56, 57). In one study, unidirectional straining
of the cell culture substratum in the range of 500–
5,000 microstrain had no effect, whereas a fluid
shear stress of 14.8 Pa rapidly induced both PGE2

and NO production (56). In the other study, four-
point bending was applied to a cell culture substra-
tum of variable plate thickness. This study showed
unequivocally that the rate of displacement, inde-
pendent of the strain magnitude, correlated with the
bone cell response (57). Because the rate of displace-
ment is proportional to the fluid force, applied by
the movement of fluid culture medium over the
culture plate during bending, the data show that the
fluid shear stress rather than the cell strain activated
the cells (57). It is likely that this conclusion also
applies to other models where cell monolayers are
mechanically stimulated by stretching the culture
substratum through a fluid culture medium (58).

Although flow of interstitial fluid through the
canaliculi as a result of bone loading was already
postulated in 1977 (59), experimental proof of this
phenomenon was provided only quite recently (60,
61). Using low- and high-molecular-weight tracers,
the diffusive transport as well as the convective
transport resulting from load-induced fluid flow was
studied in intact bones. These studies found that
diffusion alone was not efficient for transport, in the
canaliculi, of larger molecules such as microperoxi-
dase and that load-induced fluid displacements are

necessary for the maintenance of metabolic activity
in osteocytes as well as activation or suppression of
modeling processes (61). Evidence supporting this
conclusion was found in organ cultures of rat long
bone diaphyses, where intermittent axial loading
improved osteocyte viability and stimulated perios-
teal osteogenesis (62).

Flow of fluid over the cell surface subjects the cell
to two types of stimuli, fluid-induced drag forces (or
fluid shear stress) and streaming electrical potentials
(63, 64). The latter are usually held responsible for
the cellular responses in bone (42, 43, 54). However,
a recent study found no effect of applying an exter-
nal current, which either doubled or canceled the
convective current density, on the calcium response
of bone cells to fluid flow (65). These data argue that
the fluid-induced shear stress, the direct mechanical
perturbance of the cell (membrane), is the stimulus
that conveys the mechanical message to the bone
cell, in line with an earlier experimental study (66).
A combination of shear stress and streaming poten-
tials for complete cell activation is also possible and
needs further study.

Although the case for canalicular fluid flow in
mechanotransduction now seems well established,
the question of whether and how shear stress
magnitude and/or pulse frequency are related to
the type and magnitude of cellular responses
remains open. High-frequency, low-magnitude
stimuli (500 microstrain at 30 Hz) were sufficient
to stimulate new bone formation in experimental
animals, whereas low-frequency, high-magnitude
stimuli (3,000 microstrain at 1 Hz) were insuffi-
cient (67). However, another study questioned the
biological significance of high-frequency bone
strains because of their small increase in active
versus anesthetized animals (68). On the other
hand, an in vitro study found differential electro-
physiological responses in human bone cells to a
cellular perturbation as small as 15 microstrain at
different frequencies (69). More sophisticated
methods, allowing independent variation of shear
stress magnitude and pulse frequency, are needed
to study dose-response aspects in detail (70).

The importance of NO and prostaglandins as
mediators of loading-induced adaptive bone re-
sponses has been substantiated by a number of
studies. Transient rapid increase of NO release was
found in several in vitro systems, including osteocyte
monolayer cultures and bone organ cultures (36, 37,
49, 58, 71). In vivo, the NO inhibitor l-NAME
suppressed mechanically induced bone formation in
rats (72). In vitro, fluid flow rapidly (within 1 h)
induced the expression of prostaglandin G/H syn-
thase II, or COX-2, in mouse bone cells (73),
whereas in vivo in rats, specific inhibition of COX-2
but not COX-1, the constitutive form of the enzyme,
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prevented the induction of bone formation (74).
Because inhibition of NO release also prevented the
enhanced release of PGE2 after fluid flow (49),
prostaglandin up-regulation seems to be dependent
on NO up-regulation. The NO response was recently
linked to the constitutive expression by bone cells
of endothelial nitric oxide synthase, or ecNOS
(75). Human bone cell cultures from several do-
nors constitutively expressed ecNOS and showed a
modest (twofold) up-regulation of ecNOS expres-
sion 1 h after a 1-h treatment with pulsatile fluid flow
(75). ecNOS is the isoenzyme that was hitherto
considered specific for endothelial cells (76). It is
interesting to note that in endothelium ecNOS ex-
pression is related to the sensitivity of endothelial
cells to blood fluid shear stress, which is part of the
mechanism whereby blood vessels can adapt their
diameter to changes in blood pressure (see ref. 76
for a recent review). The response to fluid shear
stress in endothelial cells has been extensively char-
acterized and includes activation of a number of
kinases and multiple transcription factors followed
by induction of gene expression (77). Although the
response to flow in bone cells is less well character-
ized, several similarities with the endothelial re-
sponse have now been reported, including up-regu-
lation of prostaglandins, release of NO by
constitutively expressed ecNOS, regulation of ec-
NOS expression by shear stress, and induction of
c-fos (76–79). The similarities of these early re-
sponses suggest that both cell types possess a similar
sensor system for fluid shear stress. Sensitivity for
fluid shear stress appears to be a differentiated trait
of the osteocytic phenotype, the same as in endothe-
lial cells. As such, this finding is an argument in favor
of fluid flow as the mediator of mechanotransduc-
tion in bone, as postulated by the canalicular fluid
flow hypothesis.

THE LACUNO-CANALICULAR NETWORK AND
BONE (RE-)MODELING—A HYPOTHESIS

As shown above, there is evidence supporting the
concept that mechanical stimulation activates osteo-
cytes to produce anabolic paracine factors (such as
PGE2 and IGF), which recruit new osteoblasts from
periosteum and bone marrow stroma. To do so these
factors must be brought to the bone surface, presum-
ably in the same manner that waste products are
removed, i.e., via the lacuno-canalicular porosity.
Alternatively, an anabolic message is transported
through the cellular network, via intracellular trans-
port and gap junctions. A combination of inter- and
extracellular signals is also possible. In any case, the
integrity of the lacuno-canalicular network, both the
cellular part and the porosity, are crucial for mech-

anotransduction because the porosity produces the
ultimate mechanical signal for the cellular part.
Using this concept it is possible to explain local bone
gain as a result of local overuse, and local bone loss
as a result of local disuse, as shown schematically in
Figure 3. Physiologically “normal” bone use is
needed to keep osteocytes viable by enhanced dis-
placement of nutrients and waste, but also to provide
them with a basal level of mechanical stimulation by
fluid shear stress (Fig. 3A). Under these conditions
no osteoblasts or osteoclasts are recruited. Overuse
means overstimulation of the osteocytes by abnor-
mally high fluid shear stress, resulting in recruitment
of osteoblasts instead of lining cells to the bone
surface (Fig. 3B). It is also possible that lining cells
are activated to redifferentiate as osteoblasts (80).
The extra bone produced by the osteoblasts restores
the normal level of loading and therefore the “use”
state of osteocyte stimulation (Fig. 3B). Disuse, on
the other hand, reduces osteocyte shear stress stim-
ulation as well as reducing transport of nutrients and
waste products (Fig. 3C). The latter will reduce
osteocyte viability and may even lead to osteocyte
death. Osteocyte death could then be the signal for
recruitment of osteoclasts. Indeed, a positive corre-
lation between osteocyte apoptosis and osteoclastic
attack has been described in growing bone (81). It is,
however, also possible that well-stimulated osteocytes
inhibit osteoclast recruitment, and that disuse leads
via understimulation of osteocytes, to absence of
osteoclast-inhibiting signals. Inhibition of bone re-
sorption has been described in mechanically stimu-
lated bone of experimental animals (82). Osteoclasts
readily resorb slices of devitalized bone in vitro (83),
but in mixed cultures of osteocytes and osteoclasts,
osteocytes seemed to inhibit osteoclast activity (21).
Recently an osteocyte-derived protein has been de-
scribed that inhibits osteoclastic bone resorption
(84). These findings suggest that active suppression
of osteoclasts by osteocytes is feasible. In the concept
of osteoclastic suppression by (well stimulated) os-
teocytes, osteocyte apoptosis and osteoclastic attack
are two parallel results of lack of mechanical stimu-
lation, rather than the former being the cause of the
latter.

The theory of osteocytic suppression of osteoclasts
is useful when trying to explain the process of bone
remodeling (Fig. 4). In adult bone, osteoblastic and
osteoclastic activity are largely confined to bone
remodeling (85). Remodeling is a complicated pro-
cess that starts by osteoclasts removing existing bone,
by either digging a tunnel as in compact bone, or a
more or less shallow groove along the surface of a
trabecula. The tunnel or groove is subsequently
refilled with new bone tissue by osteoblasts. Convinc-
ing evidence has accumulated over the last decade
that remodeling serves to renew bone that was
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impaired by fatigue microdamage (86–90). Fatigue
microdamage results from repetitive loading in the
normal physiological range and, when accumulating

over time, leads to impairment of the mechanical
properties of the bone matrix (see ref. 87 for a
recent review). At the ultrastructural level, fatigue

Figure 3. Schematic representation of how the osteocyte network may regulate bone modeling. A) In the steady state, normal
mechanical use ensures a basal level of fluid flow through the lacuno-canalicular porosity, indicated by an arrowhead through
the canaliculi. This basal flow keeps the osteocytes viable and also ensures basal osteocyte activation and signaling, thereby
suppressing osteoblastic activity as well as osteoclastic attack. B)During (local) overuse, the osteocytes are over-activated by
enhanced fluid flow (indicated by double arrowheads), leading to release of osteoblast-recruiting signals. Subsequent
osteoblastic bone formation reduces the overuse until normal mechanical use is re-established, thereby re-establishing the steady
state of basal fluid flow. C) During (local) disuse, the osteocytes are inactivated by lack of fluid flow (indicated by crosses through
canaliculi). Inactivation either leads to release of osteoclast-recruiting signals or to lack of osteoclast suppressing signals, or both.
Subsequent osteoclastic bone resorption re-establishes normal mechanical use (or loading) and basal fluid flow. OCY, osteocyte;
LC, lining cell; OB, osteoblast; OCL, osteoclast; hatched area, mineralized bone matrix; dark-gray area, newly formed bone
matrix; white arrows represent direction and magnitude of loading.
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leads to focal patches of ultrastructural damage of
the fully mineralized matrix, shown as increased
permeability of the matrix for stain (91). Ultrastruc-
tural microdamage precedes the appearance of very
fine cracks observable only at greater than 31000
magnification, and these eventually coalesce into
microcracks that can be stained with basic fuchsin
and are observable at low-magnification light micros-
copy (88). The cracks will run right through the
mineralized matrix, independent of the lamellar and
osteonal organization of the tissue (91). We may
therefore assume that fatigue microdamage will in-
terfere with the integrity of the osteocytic and la-
cuno-canalicular network by disrupting canaliculi
and severing osteocyte processes. Finite element
analysis predicts changes in strain at the microstruc-
tural, cellular level as a result of microdamage (92).
Increased permeability between canalicular channel
and mineralized matrix will decrease the fluid drag

forces in the channel (93). Fatigue damage may
therefore create a situation resembling disuse at the
level of the osteocyte cell body and disrupt the
communication between osteocytes and bone sur-
face. Accumulation of fatigue damage leads to bone
remodeling (86), starting with osteoclast recruit-
ment. Active recruitment of osteoclasts by osteocyte
signaling is, however, difficult to reconcile with dis-
rupted communication between damaged osteocytes
and the bone surface. Rather, disrupted communi-
cation could abolish active suppression of osteoclasts
by osteocytes, thereby allowing resorption to start.

Whatever the precise cellular mechanism of oste-
oclast recruitment, the canalicular fluid flow hypoth-
esis predicts that fatigue microdamage will lead to
bone resorption (Fig. 4A). Resorption of micro-
damaged bone will then lead to (local) overuse and
stimulation of bone formation (Fig. 4B). Bone for-
mation will continue until a new steady state of

Figure 4. Schematic representa-
tion of how fatigue damage may
initiate bone remodeling. A) Ac-
cumulation of fatigue micro-
damage (stippled matrix) inter-
feres with canalicular fluid flow
and osteocyte signaling by dis-
rupting canaliculi and severing
osteocyte processes. Fatigue mi-
crodamage results in osteoclast
recruitment, suggesting that os-
teocyte signaling suppresses os-
teoclast recruitment rather than
activating it. Osteoclasts resorb
damaged bone until undam-
aged bone is reached, when they
are again suppressed. B) The
local loss of bone after osteoclas-
tic resorption leads to (local)
overuse of the remaining un-
damaged bone. The resulting
enhanced fluid flow through
the lacuno-canalicular network
leads to recruitment of osteo-
blasts. C) Subsequent osteoblas-
tic bone formation reestablishes
normal mechanical use and
therefore the steady state of
basal fluid flow in the renewed
bone. Stippled matrix, matrix
with fatigue microdamage; for
other symbols see Figure 3.
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normal loading (use) is reached, where osteocytes
receive again the “normal use” mechanical stimuli
(Fig. 4C). Hormonal regulation such as by parathy-
roid hormone, vitamin D, or sex hormones will
modulate the general level of activity of the bone
cells in a systemic manner, at the level of mechano-
transduction or at the level of osteoclast/osteoblast
recruitment and activity (94, 95). However, it is
unlikely that hormones will interfere with the local
accumulation of microdamage or with the principles
of local mechanoregulated bone (re-)modeling (96).

Can the model as described above be experimen-
tally tested? In an animal study, bending of bone
proved a better stimulus for adaptive responses than
vertical loading (54). Because bending also produces
more canalicular fluid flow than vertical loading, this
result supports the canalicular fluid flow hypothesis
(54). A recent study in rats showed alteration of
osteocyte and canalicular integrity around cortical
resorption spaces activated by fatigue loading (96a).
This study is the first to experimentally relate osteo-
cyte integrity to initiation of bone remodeling. Other
experimental verification may come from in vitro
studies by submitting osteocytes to fluid shear stress
and studying the production of osteoblast- and oste-
oclast-modulating factors. In the multitude of studies
that have been performed on (chemical) regulation
of osteoblasts and osteoclasts, several useful in vitro
approaches have been developed, including bone
organ cultures, cell cultures, and in vitro functional
assays (97, 98). These should also be of value for
testing theories of cellular mechanical regulation.

MICROGRAVITY AND BONE LOSS—A ROLE
FOR THE LACUNO-CANALICULAR
POROSITY?

Microgravity, as occurring during spaceflight, has
negative effects on the skeleton, leading to bone loss
(99–101). Histological studies in young rats suggest
that the decreased bone formation rate during
spaceflight may be due in part to reduced osteoblast
activity (100, 102). Spaceflight decreased mRNA
levels of osteocalcin, type I collagen, and transform-
ing growth factor b (TGF-b) in rat bone periosteum
(103, 104). In addition, osteoblastic cells in cell
culture show a reduced growth and hormone re-
sponsiveness during spaceflight (105, 106). Finally, a
decreased mineralization as well as increased min-
eral resorption were found in organ cultures of long
bone rudiments exposed to spaceflight (107). These
findings suggest that bone tissue is directly sensitive
to spaceflight conditions.

The question remains as to how the lack of gravity
is detected. Could microgravity act directly on the
bone cells? Or more precisely, could osteocytes and

osteoblasts read the gravitational field change di-
rectly? The effects of microgravity on bone cells in
monolayer cell culture seem to suggest that such a
detection system exists. However, a recent paper by
Cowin shows that the adhesive forces acting on a
living cell attached to a substratum are several orders
of magnitude larger than the weight of the cell
(108). Compared with the adhesive forces expressed
by cells in monolayer culture (109), the gravitational
forces on a cell at the earth’s surface are minuscule,
amounting to 1023 to 1024 of the adhesive force
(108). This makes it unlikely that cells that are
attached to their matrix, as in intact bone, or are
attached to a tissue culture substratum, as in in vitro
experiments, can sense directly the change in the
gravity field of interest. Rather, the clear effects of
microgravity that have been found in cultured bone
cells (105, 106) may be the consequence of indirect
effects of weightlessness. Microgravity strongly re-
duces convection in the fluid culture medium
around cultured cells, thereby reducing the supply
of nutrients and dispersion of waste molecules. This
may have negative effects on the cultured cell’s
metabolism, which could explain the in vitro data.
Unfortunately, experiments specifically addressing
this point are lacking.

There is evidence that at the subcellular level,
cytoskeletal macromolecule assembly may, under
certain conditions, be sensitive to the gravitational
field. In vitro studies of the self-ordering process of a
cell-free preparation of tubulin in solution have
shown that the morphology of the microtubule-
related structures that form depends on the orienta-
tion of the sample with respect to gravity (110, 111).
An important condition for this effect of gravity is
that the microtubule preparation is chemically and
structurally far from equilibrium (111). Such a situ-
ation might exist in a cell during the process of
mitosis, when microtubular rearrangements are
large. However, osteocytes are post-mitotic cells. Be-
cause they are also strongly attached to their sur-
rounding matrix, even in monolayer culture (112),
the current evidence for a direct effect of (micro)grav-
ity on bone cells is inconclusive. Even if osteocytes or
osteoblasts could sense gravitational change directly,
it seems unlikely that such an ability could be related
to the loss of bone mass in humans during space-
flight. Bone adaptation studies have shown that a
constant, non-time-varying force applied to bone has
the same effects as no force (113). Or, for the
purpose of bone maintenance and adaptation, bone
tissue only responds to time-varying forces, whereas
the change in G force does not vary during space-
flight except for takeoff and landing.

On the other hand, spaceflight does produce a
unique condition of skeletal unloading because of
the near absence of gravity. Weightlessness not only
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annihilates weight, but also reduces the amount of
muscle contraction forces on the skeleton. There-
fore, the negative effects of spaceflight on bone mass
can be easily explained as resulting from disuse.
Disuse leads to lack of canalicular fluid flow, oste-
oclastic bone resorption, and bone loss, as discussed
above. The reported lack of recruitment of osteo-
blast progenitors during spaceflight in growing ani-
mals can also be explained by weightlessness-in-
duced lack of canalicular flow, if we assume that the
rate of osteoblast progenitor recruitment is (partly)
determined by the osteocytes. Simply stated, the loss
of gravity during spaceflight has a major effect on
bones, but only a minuscule direct effect on bone
cells. Spaceflight-related bone loss is therefore easily
explained via the negative effects of microgravity on
bone loading, which indirectly lead to bone loss as a
result of disuse, but much more difficult as a direct
effect of microgravity on bone cells.

Apart from the obvious disuse effects of micrograv-
ity, it may be worthwhile to consider the effect of
spaceflight on fluid distribution in the human body.
Under microgravity, important fluid redistribution
occurs along the human body axis, because intersti-
tial tissue fluid shifts from the legs and pelvis to the
chest and head (114, 115). This redistribution seems
to be due to a unique shift of tissue pressures,
volumes, and lymphatic throughput values during
spaceflight (116). There are also data suggesting that
in humans, bone mineral loss during spaceflight is
unevenly distributed along the body axis, being most
pronounced in the legs and pelvis. In the head even
a small but significant increase in bone mineral
density has been observed (117, 118). Thus, changes
in bone mineral density seem to correlate with
changes in interstitial fluid pressure during space-
flight, reduced fluid pressure correlating with bone
loss and enhanced fluid pressure with bone gain. In
the model that we have just discussed (Fig. 3),
reduced interstitial fluid pressure in the canaliculi
would reduce canalicular fluid shear stress as a result
of strain, whereas increased fluid pressure would
increase canalicular fluid shear stress. This is com-
patible with bone loss in the former situation and
bone gain in the latter, thereby providing indirect
evidence for a relationship between fluid pressure
and bone balance. Currently no direct studies link-
ing these two issues are available but it may be
worthwhile to further analyze their possible relation-
ship. Manned spaceflight could then be a unique
condition to test the canalicular fluid flow hypothesis
as discussed in this review.

The authors are grateful to Drs. Melvin L. Moss, Letty
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